Optimizing co-adaptation in motor BCIs by uncovering brain-decoder interactions

通过揭示大脑-解码器相互作用来优化运动脑机接口的共同适应

基本信息

  • 批准号:
    10775032
  • 负责人:
  • 金额:
    $ 70.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-25 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Brain-computer interfaces (BCIs) hold great promise to restore movement to paralyzed people. But BCIs cannot yet provide reliable performance across the long timespans and varied settings needed for real- world applications. Maintaining robust BCI performance over many days is challenging because brains are highly plastic. Plasticity during extended BCI practice leads to changes in how neural activity relates to move- ments—the brain’s encoding of BCI movement. How the brain’s encoding changes is influenced by the decod- ing algorithm used by the BCI to map neural activity into movement. These interactions create complex dynam- ics where methods that improve performance in the short term may produce problems longer-term. Indeed, our preliminary data suggests current adaptive decoding methods used to maintain performance over time lead the brain to form encoders where very few neural signals control movements, which make BCI vulnerable to cata- strophic failure with loss of a single neural signal. The long-term vision of this proposal is to expand the engi- neering tools available to produce robust, high-performance BCIs by building tools that account for and even leverage plasticity. To enable this vision, this proposal will test the overarching hypothesis that decoder-en- coder interactions can be used to jointly optimize BCI performance and robustness. We focus on robustness of BCI systems to signal loss and changes in task context. We will use an animal model where monkeys move cursors with activity from motor cortices, which has repeatedly informed clinical BCIs. We will leverage novel micro-electrocorticography implants that allow us to longitudinally monitor and manipulate cortical dynamics to advance our understanding of plasticity in multi-day (10 days) BCI training. We will test our overarching hy- pothesis across three aims. If our hypothesis is true, there must be relationships between decoders and prop- erties of encoders that are related to robustness. Aim 1 will determine whether decoders influence how infor- mation is structured in an encoder, which influences how robust BCIs are to signal loss. Aim 2 will determine whether decoders influence the specificity of learned encoders to BCI movements, which influences how ro- bust BCIs are to changes in tasks. Finally, if our hypothesis is true, it requires computational tools that can opti- mize multiple goals in a BCI. Aim 3 will test a novel decoder training paradigm we developed that can consider multiple objectives. We will compare our novel method to established single-objective methods to determine whether multi-objective methods can improve robustness without compromising performance. Across all aims, we will perform offline analyses and online perturbations to measure robustness to signal loss and changes in neural state and behavioral task. Together, these studies will identify how critical plasticity computations can be influenced through the decoder. Pairing this with tests of novel decoding methods will establish new frame- works to build encoder-informed decoders and pave the way for BCIs that can leverage brain plasticity.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy L Orsborn其他文献

Amy L Orsborn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ANIMAL MODEL DEVELOPMENT AND BEHAVIORAL ASSESSMENT (AMD-BA) CORE
动物模型开发和行为评估 (AMD-BA) 核心
  • 批准号:
    10320858
  • 财政年份:
    2019
  • 资助金额:
    $ 70.12万
  • 项目类别:
ANIMAL MODEL DEVELOPMENT AND BEHAVIORAL ASSESSMENT (AMD-BA) CORE
动物模型开发和行为评估 (AMD-BA) 核心
  • 批准号:
    10536647
  • 财政年份:
    2019
  • 资助金额:
    $ 70.12万
  • 项目类别:
ANIMAL MODEL DEVELOPMENT AND BEHAVIORAL ASSESSMENT (AMD-BA) CORE
动物模型开发和行为评估 (AMD-BA) 核心
  • 批准号:
    10077913
  • 财政年份:
    2019
  • 资助金额:
    $ 70.12万
  • 项目类别:
The biodemography of early adversity: social behavioral processes in a wild animal model.
早期逆境的生物人口学:野生动物模型中的社会行为过程。
  • 批准号:
    10212909
  • 财政年份:
    2018
  • 资助金额:
    $ 70.12万
  • 项目类别:
The biodemography of early adversity: social behavioral processes in a wild animal model.
早期逆境的生物人口学:野生动物模型中的社会行为过程。
  • 批准号:
    10426109
  • 财政年份:
    2018
  • 资助金额:
    $ 70.12万
  • 项目类别:
New behavioral animal model to study genetic and environmental factors in the cause of depression
研究抑郁症病因的遗传和环境因素的新行为动物模型
  • 批准号:
    16K07100
  • 财政年份:
    2016
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New behavioral animal model to study vulnerability factors for depression
研究抑郁症脆弱因素的新行为动物模型
  • 批准号:
    24730636
  • 财政年份:
    2012
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Behavioral pharmacological study to develop animal model systems for creating drugs to treat autism
行为药理学研究开发动物模型系统来制造治疗自闭症的药物
  • 批准号:
    22659190
  • 财政年份:
    2010
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Behavioral and Neuroanatomical Characterization of a Novel Genetic Animal Model o
新型遗传动物模型的行为和神经解剖学特征
  • 批准号:
    7881342
  • 财政年份:
    2010
  • 资助金额:
    $ 70.12万
  • 项目类别:
Behavioral deficits in rats treated neonatally with an NMDA antagonist, a putative animal model of schizophrenia
用 NMDA 拮抗剂(一种假定的精神分裂症动物模型)治疗的新生大鼠的行为缺陷
  • 批准号:
    20530664
  • 财政年份:
    2008
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了