Regulation of oxidative stress signaling by tyrosine phosphorylation of antioxidant enzymes

通过抗氧化酶的酪氨酸磷酸化调节氧化应激信号

基本信息

  • 批准号:
    10785152
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Oxidative stress is a byproduct of energy production necessary for all living organisms and caused by unregulated reactive oxygen/nitrogen/carbonyl species (ROS/RNS/RCS) among others. Nature has evolved the oxidative stress response (OSR) as a key component of metabolism that maintains cellular homeostasis by detoxifying and neutralizing aberrant reactive molecules. Spatiotemporally control of OSR is achieved through compartmentalization and redundancies that are coupled to create a redox balance to promote survival. Unbalanced OSR due to a defective or overactive capacity to resolve oxidative damage is associated with various human diseases. For example, chronic OSR is a hallmark of obesity, a global epidemic as well as a major risk factor for developing cardiovascular diseases, metabolic syndrome, and cancer. To better understand obesity, it is paramount that we elucidate the coordination of the OSR metabolon, defined here as the sequential antioxidant enzymes, biochemical reactions, and cellular compartments that maintain redox homeostasis. The proper regulation of and adaptive changes by OSR require rapid signaling taking place in the seconds-to- minute timeframe. Such dynamics must therefore require fast regulatory networks such as protein post- translational modifications (PTMs). Phosphorylation of serine (S) (~90%), threonine (T) (~9%), and tyrosine (Y) (~0.1-1%) residues are one of the many ways cells regulate pathways that maximize survival. Initial evaluation of the published phosphoproteome stratified by enzyme classification and pathway enrichment analysis indicates that, despite low intracellular stoichiometry, pY are enriched on antioxidant enzymes. However, the majority of pY sites on antioxidant enzymes are not functionally characterized. My overarching goal in this proposal is to gain network level insight into the pY directed regulation of antioxidant enzymes and the resulting dynamics of dysregulated OSR. I hypothesize that obesity-driven pY on multiple antioxidant enzymes modulates their catalytic activity to produce systemic changes in OSR. I will test this hypothesis by employing proteomics, metabolomics, structural analysis, and computational modeling. During the mentored phase of this application, I will predict the functional role of previously uncharacterized pY, validate predictions using in vivo as well as in vitro enzyme kinetic assays, and demonstrate pY-driven OSR dysregulation in an in vivo high-fat diet (HFD)- induced obesity mouse model. Through these interdisciplinary approaches, I aim to define systems of pY- modified enzymes that “tune” metabolic response to HFD, and evaluate differential regulation of OSR in a sex specific manner. Additionally, I will determine how altered dietary serine, glycine, or addition of small molecule antioxidants ameliorate HFD phenotypes, and the sex specific responses in the OSR metabolon that may be therapeutically relevant. This proposal and the outlined training plan will equip me with the technical skills, scientific knowledge, and professional training that will serve as the foundation to launch my research focused on OSR regulation as an independent investigator.
项目摘要 氧化应激是所有生物体所必需的能量产生的副产品, 不受调节的活性氧/氮/羰基物质(ROS/RNS/RCS)等。大自然进化出了 氧化应激反应(OSR)作为代谢的关键组成部分,通过以下方式维持细胞内稳态: 解毒和中和异常反应分子。OSR的时空控制是通过 区室化和冗余,它们结合在一起以产生氧化还原平衡,从而促进存活。 由于解决氧化损伤的能力有缺陷或过度活跃而导致的OSR不平衡与以下因素有关: 各种人类疾病。例如,慢性OSR是肥胖症的标志,是全球流行病,也是肥胖症的一个标志。 心血管疾病、代谢综合征和癌症的主要危险因素。更好地了解 肥胖,这是至关重要的,我们阐明协调的OSR代谢,这里定义为顺序 抗氧化酶、生化反应和维持氧化还原稳态的细胞区室。 OSR的适当调节和适应性变化需要在几秒钟内发生快速信号传导, 分钟的时间。因此,这种动力学必须需要快速的调控网络,如蛋白质后, 翻译修饰(translational modifications,PTM)。丝氨酸(S)(~90%)、苏氨酸(T)(~9%)和酪氨酸(Y)的磷酸化 (~0.1 - 1%)残基是细胞调节最大化存活的途径的多种方式之一。初评 的已发表的磷酸化蛋白质组分层的酶分类和途径富集分析表明 尽管细胞内化学计量较低,但pY富含抗氧化酶。但大多数 抗氧化酶上的pY位点没有功能特征。我在这个提案中的首要目标是 获得对抗氧化酶的pY定向调节和由此产生的动态的网络水平的洞察力, OSR失调我假设肥胖驱动的pY对多种抗氧化酶的调节, 产生OSR系统性变化的催化活性。我将用蛋白质组学来检验这个假设, 代谢组学、结构分析和计算建模。在此应用程序的指导阶段, 我将预测以前未表征的pY的功能作用,验证预测使用在体内以及在体外。 体外酶动力学测定,并证明在体内高脂饮食(HFD)中pY驱动的OSR失调- 诱导肥胖小鼠模型。通过这些跨学科的方法,我的目标是定义系统的pY- 修饰的酶,"调整"代谢反应HFD,并评估不同性别的OSR的差异调节 具体方式。此外,我将确定如何改变饮食丝氨酸,甘氨酸,或添加小分子 抗氧化剂改善HFD表型,OSR代谢子中的性别特异性反应可能是 治疗相关。这个建议和概述的培训计划将使我具备技术技能, 科学知识和专业培训,将作为基础,启动我的研究重点 作为独立调查员参与OSR监管。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tigist Y Tamir其他文献

Dissecting the Keap1/Nrf2 pathway through proteomics
通过蛋白质组学剖析 Keap1/Nrf2 通路
  • DOI:
    10.1016/j.cotox.2016.10.007
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tigist Y Tamir;K. Mulvaney;M. B. Major
  • 通讯作者:
    M. B. Major

Tigist Y Tamir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Creation of nano-biochemical reaction platform using hydrated polymer brush thin film
利用水合聚合物刷薄膜创建纳米生化反应平台
  • 批准号:
    23K17717
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Creation of biochemical reaction field for target specific reaction in cellulo, by synthetic chromatin liquid-liquid phase separation
通过合成染色质液-液相分离,为纤维素中的目标特异性反应创建生化反应场
  • 批准号:
    22KJ0929
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    DGECR-2019-00215
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Launch Supplement
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of Metabolic Phenotypes and Systemic Biochemical Reaction Networks Associated with Human Blood Pressure
与人体血压相关的代谢表型和全身生化反应网络的鉴定
  • 批准号:
    MR/S004033/1
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Fellowship
CAREER: Biochemical Reaction Systems: from Structure to Dynamics
职业:生化反应系统:从结构到动力学
  • 批准号:
    1752672
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Construction of novel self-oscillating polymer systems utilizing biochemical reaction
利用生化反应构建新型自振荡聚合物系统
  • 批准号:
    17K19148
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了