NanoMedicine Center for Mechanical Biology (RMI)
机械生物学纳米医学中心 (RMI)
基本信息
- 批准号:7293529
- 负责人:
- 金额:$ 122.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-30 至 2010-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological ModelsBiologyBiophysicsCell CommunicationCell physiologyCellsCellular StructuresCellular biologyChemicalsChromosome PairingComplexCuesDefectDevelopmentDevelopmental BiologyDiseaseEngineeringFluorescence MicroscopyGene ExpressionGeneticImage AnalysisImmuneImmune System DiseasesImmunologyIndividualLocationMalignant NeoplasmsMechanicsMedicalMicroscopyModelingMolecularMuscle RigidityNanotechnologyNeoplasm MetastasisNeuropathyOrganismProcessRangeResearchRoleScientistShapesSignal TransductionSignaling Pathway GeneSynapsesSystemTechniquesTechnologyTestingThinkingTouch sensationWorkWound Healingabstractingmalformationnanofabricationnanomedicinenanoscalenanotoolnovelnovel strategiesresponsesingle moleculetool
项目摘要
DESCRIPTION (application abstract)
Nanotechnology promises to deliver the needed tools to address one of the major unsolved questions: How are cell components integrated to work in synchrony? Although much work has been put into the chemical integration of cellular process, we believe that mechanical factors are equally important. Cellular responses to mechanical cues, mechanotransduction, determine the shape of the organism and are critical for many functions. Defects in mechanotransduction underlie many diseases such as cancers, immune disorders, genetic malformations, and neuropathies. To understand the roles of force, rigidity and form in regulating cell functions requires the development of detailed quantitative pictures of this machinery at both the single molecule level, describing how single molecules respond to mechanical forces, and at the systems level. Further, we will need an understanding of how forces regulate signaling pathways and gene expression. The tools of nanotechnology and modern cell biology now provide the means to investigate many of the physical aspects of these complex processes at the micro- and nano-meter scale. We feel that the best way to understand mechanotransduction in a quantitative way is to develop an integrated approach, ranging from individual molecules to whole systems. Our team has a wide range of expertise including Cell Biophysics and Nanofabrication, Advanced Fluorescence Microscopy and Image Analysis, Immunology and Supported Bilayer Fabrication, Developmental Biology and Signaling Systems Modeling. All groups have multiple projects underway to address important questions in mechanotransduction. Our preliminary results indicate that many different cells are capable of utilizing similar force-sensing, force-generating and force-bearing systems, which stimulates us to think that for many tasks, cells can use a common tool set and phenotypic differences result from differences in the extent and location of use of one tool versus another. This diverse team of scientists, engineers and mathematicians has the expertise and the capabilities to develop and test models of mechanotransduction at the cell and molecular level. Nanotechnology developed in our group enables us to rapidly screen for the optimal matrix rigidity, form, and spacing needed to elicit a given function. Our plan is to customize these technologies to test important biological and engineering models of cell processes. We are addressing these questions at the single cell level, at the level of cell-cell interactions with a focus on the immune synapse, and at the multicellular level in the development of touch sensation. From an understanding of the molecular mechanisms of mechanotransduction in cells, we can develop models to be tested in the cell-cell and multicellular systems. This research will provide important new approaches to stop metastases, to facilitate wound healing and many other medical problems that depend upon mechanotransduction.
描述(应用摘要)
纳米技术有望提供所需的工具,以解决一个主要的未解决的问题:如何整合细胞组件同步工作?尽管细胞过程的化学整合已经做了大量的工作,但我们相信机械因素同样重要。细胞对机械信号的反应,机械信号转导,决定了生物体的形状,对许多功能至关重要。机械传导的缺陷是许多疾病的基础,例如癌症、免疫紊乱、遗传畸形和神经病。为了理解力、刚性和形状在调节细胞功能中的作用,需要在单分子水平和系统水平上开发这种机制的详细定量图像,描述单分子如何响应机械力。此外,我们还需要了解力如何调节信号通路和基因表达。纳米技术和现代细胞生物学工具现在提供了在微米和纳米尺度上研究这些复杂过程的许多物理方面的方法。我们认为,以定量的方式理解机械转导的最佳方法是开发一种综合的方法,从单个分子到整个系统。我们的团队拥有广泛的专业知识,包括细胞生物物理学和纳米纤维,高级荧光显微镜和图像分析,免疫学和支持双层制造,发育生物学和信号系统建模。所有小组都有多个项目正在进行中,以解决机械传导中的重要问题。我们的初步结果表明,许多不同的细胞能够利用类似的力感测,力产生和力承载系统,这促使我们认为,对于许多任务,细胞可以使用一个共同的工具集,表型差异是由于使用一种工具的程度和位置的差异而导致的。这个由科学家、工程师和数学家组成的多元化团队拥有在细胞和分子水平上开发和测试机械转导模型的专业知识和能力。我们小组开发的纳米技术使我们能够快速筛选出引发给定功能所需的最佳基质刚度、形式和间距。我们的计划是定制这些技术来测试细胞过程的重要生物和工程模型。我们在单细胞水平上解决这些问题,在细胞间相互作用的水平上关注免疫突触,在触觉发展的多细胞水平上解决这些问题。通过对细胞中机械力传导的分子机制的理解,我们可以开发出在细胞-细胞和多细胞系统中进行测试的模型。这项研究将提供重要的新方法来阻止转移,促进伤口愈合和许多其他依赖于机械转导的医学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL Patrick SHEETZ其他文献
MICHAEL Patrick SHEETZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL Patrick SHEETZ', 18)}}的其他基金
Tropomyosin and tyrosine kinases in mechanics of cancer
原肌球蛋白和酪氨酸激酶在癌症机制中的作用
- 批准号:
9247873 - 财政年份:2015
- 资助金额:
$ 122.47万 - 项目类别:
Nanostructure Devices for Measuring Cell Mechanics
用于测量细胞力学的纳米结构装置
- 批准号:
7617999 - 财政年份:2006
- 资助金额:
$ 122.47万 - 项目类别:
Nanostructure Devices for Measuring Cell Mechanics
用于测量细胞力学的纳米结构装置
- 批准号:
7025538 - 财政年份:2006
- 资助金额:
$ 122.47万 - 项目类别:
Nanostructure Devices for Measuring Cell Mechanics
用于测量细胞力学的纳米结构装置
- 批准号:
7876735 - 财政年份:2006
- 资助金额:
$ 122.47万 - 项目类别:
2006 Gordon Research Conference on Signal Transduction By Engineered ECM
2006 年戈登工程 ECM 信号传导研究会议
- 批准号:
7114195 - 财政年份:2006
- 资助金额:
$ 122.47万 - 项目类别:
Nanostructure Devices for Measuring Cell Mechanics
用于测量细胞力学的纳米结构装置
- 批准号:
7424241 - 财政年份:2006
- 资助金额:
$ 122.47万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 122.47万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 122.47万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 122.47万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 122.47万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 122.47万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 122.47万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 122.47万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 122.47万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 122.47万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 122.47万 - 项目类别: