Discrete Projective Differential Geometry: Comprehensive Theory and Integrable Structure
离散射影微分几何:综合理论与可积结构
基本信息
- 批准号:DP140100851
- 负责人:
- 金额:$ 26.31万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2014
- 资助国家:澳大利亚
- 起止时间:2014-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential geometry has been developed over centuries by the most distinguished of mathematicians and its applicability in the mathematical and physical sciences is beyond doubt. However, both natural and man-made structures are inherently discrete. Discrete differential geometry constitutes a relatively new and active research area located between pure and applied mathematics which is more fundamental than differential geometry in that it aims to establish an autonomous discrete analogue from which differential geometry may be derived via an appropriate continuum limit. Even though discrete differential geometry has reached a high degree of sophistication, this project seeks to deliver the first comprehensive theory in this area.
微分几何已经发展了几个世纪的最杰出的数学家和它的适用性在数学和物理科学是毫无疑问的。然而,自然和人造结构本质上都是离散的。离散微分几何构成了一个相对较新的和活跃的研究领域位于纯数学和应用数学之间,它比微分几何更基本,因为它的目的是建立一个自治的离散模拟,微分几何可以通过适当的连续极限导出。尽管离散微分几何已经达到了高度的复杂性,这个项目旨在提供在这一领域的第一个全面的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Wolfgang Schief其他文献
Prof Wolfgang Schief的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Wolfgang Schief', 18)}}的其他基金
Multi-dimensionally consistent integrable systems in geometry and algebra
几何和代数中的多维一致可积系统
- 批准号:
DP200102118 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
Discovery Projects
Discrete differential geometry: theory and applications
离散微分几何:理论与应用
- 批准号:
DP110102186 - 财政年份:2011
- 资助金额:
$ 26.31万 - 项目类别:
Discovery Projects
On the Geometry of Liquid Crystals and Biological Membranes
液晶与生物膜的几何结构
- 批准号:
DP0556626 - 财政年份:2005
- 资助金额:
$ 26.31万 - 项目类别:
Discovery Projects
相似海外基金
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 26.31万 - 项目类别:
Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 26.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Projective limits of sparse graphs
CIF:小:稀疏图的投影极限
- 批准号:
2311160 - 财政年份:2023
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
The Geometry of Curves in Projective Space via Degeneration and Deformation
通过退化和变形研究射影空间中的曲线几何
- 批准号:
2200641 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
Standard Grant
Visualization of environmental improvement results for indoor and outdoor spaces of childcare facilities using behavior observation and photo projective method
使用行为观察和照片投影法将托儿设施室内外空间的环境改善结果可视化
- 批准号:
22K14399 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
- 批准号:
22K03236 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Projective models for spaces of constant sectional curvature
恒定截面曲率空间的射影模型
- 批准号:
573639-2022 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
University Undergraduate Student Research Awards
Formalizing the fundamental theorem of projective geometry
射影几何基本定理的形式化
- 批准号:
573161-2022 - 财政年份:2022
- 资助金额:
$ 26.31万 - 项目类别:
University Undergraduate Student Research Awards
Construtions of log symplectic structures which characterize quadric hypersurfaces and projective spaces.
表征二次超曲面和射影空间的对数辛结构的构造。
- 批准号:
21K20339 - 财政年份:2021
- 资助金额:
$ 26.31万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mori cones of the blow-ups of weighted projective surfaces
加权投影面放大的森锥体
- 批准号:
562644-2021 - 财政年份:2021
- 资助金额:
$ 26.31万 - 项目类别:
University Undergraduate Student Research Awards