A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
基本信息
- 批准号:7751499
- 负责人:
- 金额:$ 7.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2011-07-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsBayesian MethodBioinformaticsBiologicalBiological ModelsCancer CenterCandidate Disease GeneCell physiologyClinicalCodeCommunitiesComplexDataData SetDiseaseEpidemiologyEthnic OriginFamily Cancer HistoryFirst Degree RelativeGenderGenesGeneticGenetic CounselingGenetic MarkersGenetic Predisposition to DiseaseGenetic StructuresGenomeGenome ScanGrantIndividualKnowledgeLeadLeftLinkage DisequilibriumLogistic RegressionsMalignant NeoplasmsMalignant neoplasm of lungMarkov ChainsMethodological StudiesMethodsModelingPathway interactionsPatternPrevention ResearchPrevention strategyProcessProteinsRecording of previous eventsRelative (related person)ReportingResearchResearch PersonnelRiskSample SizeSamplingSimulateSingle Nucleotide PolymorphismSmokerSmokingStagingStructureTechniquesTestingTexasTobaccoTrustUncertaintyUniversitiesalcohol exposurecancer preventioncase controldesigndisorder riskdrinkingfallsgene discoverygenetic analysisgenetic associationgenetic risk factorgenome wide association studygenome-wideindexinginsightlung cancer preventionmathematical modelnovelpreventresponsesimulationsuccesstooltrait
项目摘要
DESCRIPTION (provided by applicant):
A key component to preventing cancer is uncovering the genetics behind various cancers and the complex traits and diseases that lead to cancer. To uncover the genetic etiology for cancers and other complex diseases or traits, it is necessary to use methods that jointly consider multiple genetic components underlying the disease. Genome wide association (GWA) studies use methods to scan the genome looking for possible genetic associations with disease risk. However, many GWA studies perform the analysis using a univariate approach - treating each genetic marker as independent. Recently, methods for simultaneous significance testing and multivariate hierarchical models have started to consider multiple genes simultaneously, rather than univariately. While considering markers simultaneously, these methods restrict themselves to the assumption that when scanning the genome, the number of genes detected will be very small compared to the number of genes investigated. In response, we propose to develop novel, more powerful tools that use Bayesian model averaging methods to include genetic structure in the models, while simultaneously searching for genes in a complex disease, such as lung cancer, on a genome wide scale. Such models that include biological information can increase the power to detect small contributors to risk for complex diseases, and can still include sparsity information that controls for false positives. Recently, we completed a methodological study showing that Bayesian model averaging performs better than standard selection techniques using multivariate logistic regression in a hypothesis driven or candidate gene type approach. The central theme of this proposal is to develop Bayesian model averaging methods that incorporate genetic structure inherent to markers used in GWA studies that can also search through the immense number of markers available for GWA studies. We propose to develop fast Markov chain Monte Carlo algorithms for Bayesian model averaging techniques. We will calibrate the newly developed statistical techniques using simulation studies, and apply the new and calibrated methods to perform a GWA study of lung cancer using data already available at M. D. Anderson Cancer Center. The significance of this proposal is to develop new methods of performing GWA studies that will incorporate available biological information that can increase power and control false positives to detect genetic factors contributing to cancer.
描述(由申请人提供):
预防癌症的一个关键组成部分是揭示各种癌症背后的遗传学以及导致癌症的复杂特征和疾病。为了揭示癌症和其他复杂疾病或特征的遗传病因,有必要使用联合考虑疾病背后的多种遗传成分的方法。全基因组关联(GWA)研究使用扫描基因组的方法来寻找与疾病风险可能的遗传关联。然而,许多GWA研究使用单变量方法进行分析-将每个遗传标记视为独立的。最近,同时显著性检验和多变量层次模型的方法已经开始同时考虑多个基因,而不是单变量。当同时考虑标记时,这些方法将其自身限制于这样的假设,即当扫描基因组时,检测到的基因的数量与研究的基因的数量相比将非常小。作为回应,我们建议开发新的,更强大的工具,使用贝叶斯模型平均方法,包括模型中的遗传结构,同时在基因组范围内搜索复杂疾病(如肺癌)中的基因。包括生物信息的这种模型可以增加检测复杂疾病风险的小贡献者的能力,并且仍然可以包括控制假阳性的稀疏信息。最近,我们完成了一项方法学研究,表明贝叶斯模型平均比标准选择技术更好地使用多变量逻辑回归的假设驱动或候选基因类型的方法。该提案的中心主题是开发贝叶斯模型平均方法,该方法结合了GWA研究中使用的标记所固有的遗传结构,也可以搜索大量可用于GWA研究的标记。我们建议开发快速马尔可夫链蒙特卡罗算法的贝叶斯模型平均技术。我们将使用模拟研究校准新开发的统计技术,并应用新的和校准的方法,使用M。D.安德森癌症中心。该提案的意义在于开发新的GWA研究方法,这些方法将整合现有的生物信息,可以增加检测导致癌症的遗传因素的能力并控制假阳性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D SWARTZ其他文献
MICHAEL D SWARTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D SWARTZ', 18)}}的其他基金
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9249077 - 财政年份:2016
- 资助金额:
$ 7.7万 - 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9035008 - 财政年份:2016
- 资助金额:
$ 7.7万 - 项目类别:
A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
- 批准号:
7891238 - 财政年份:2009
- 资助金额:
$ 7.7万 - 项目类别:
A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
- 批准号:
8182516 - 财政年份:2009
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7828080 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
8196515 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7264806 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7631262 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7419010 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
8210965 - 财政年份:2007
- 资助金额:
$ 7.7万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant














{{item.name}}会员




