Methods for genomic data with graphical structures
具有图形结构的基因组数据的方法
基本信息
- 批准号:7599555
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnalysis of VarianceAreaBiologicalBiological ProcessChargeClinicalCollaborationsComplexComputer softwareCox Proportional Hazards ModelsDataData AnalysesData SetDatabasesDevelopmentDiseaseDocumentationEventFailureGene ExpressionGenesGenomicsGrantGraphHearingHeart failureHumanInternetLassoLinear ModelsMachine LearningMetabolic PathwayMetadataMethodologyMethodsModelingMultivariate AnalysisNeuroblastomaPathway interactionsPennsylvaniaPerformancePhenotypeProceduresProteomicsRegulatory PathwayResearch PersonnelSamplingSignal PathwayStatistical MethodsStatistical ModelsStructureSystemTestingTimeUniversitiesWorkbiological systemsclinical phenotypecomputer programcomputerized toolsgenetic analysisheart allografthigh throughput technologyhuman diseaseinsightinterestnovelprogramsresearch studyresponsesoftware developmenttheoriesvector
项目摘要
DESCRIPTION (provided by applicant): The broad, long-term objective of this project concerns the development of novel statistical methods and computational tools for statistical and probabilistic modeling of genomic data motivated by important biological questions and experiments. The specific aim of the current project is to develop new statistical models and methods for analysis of genomic data with graphical structures, focusing on methods for analyzing genetic pathways and networks, including the development of nonparametric pathway-smooth tests for two-sample and analysis of variance problems for identifying pathways with perturbed activity between two or multiple experimental conditions, the development of group Lasso and group threshold gradient descent regularized estimation procedures for the pathway-smoothed generalized linear models, Cox proportional hazards models and the accelerated failure time models in order to identify pathways that are related to various clinical phenotypes. These methods hinge on novel integration of spectral graph theory, non-parametric methods for analysis of multivariate data and regularized estimation methods fro statistical learning. The new methods can be applied to different types of genomic data and will ideally facilitate the identification of genes and biological pathways underlying various complex human diseases and complex biological processes. The project will also investigate the robustness, power and efficiencies o these methods and compare them with existing methods. In addition, this project will develop practical a feasible computer programs in order to implement the proposed methods, to evaluate the performance o these methods through application to real data on microarray gene expression studies of human hear failure, cardiac allograft rejection and neuroblastoma. The work proposed here will contribute both statistical methodology to modeling genomic data with graphical structures, to studying complex phenotypes and biological systems and methods for high-dimensional data analysis, and offer insight into each of the clinical areas represented by the various data sets to evaluate these new methods. All programs developed under this grant and detailed documentation will be made available free-of-charge to interested researchers via the World Wide Web.
描述(由申请人提供):该项目的长期目标是开发新的统计方法和计算工具,用于重要的生物学问题和实验驱动的基因组数据的统计和概率建模。当前项目的具体目标是开发新的统计模型和方法,用于分析具有图形结构的基因组数据,重点是分析遗传途径和遗传网络的方法,包括开发用于两样本的非参数路径平滑测试和方差分析问题,以确定在两个或多个实验条件之间具有扰动活动的途径。为路径平滑的广义线性模型、Cox比例风险模型和加速失效时间模型开发了组Lasso和组阈值梯度下降正则化估计程序,以识别与各种临床表型相关的通路。这些方法依赖于谱图理论的新颖整合,多变量数据分析的非参数方法和统计学习的正则化估计方法。新方法可应用于不同类型的基因组数据,并将理想地促进识别各种复杂人类疾病和复杂生物过程背后的基因和生物途径。该项目还将调查这些方法的鲁棒性、功率和效率,并将它们与现有方法进行比较。此外,本项目将开发一个实际可行的计算机程序来实现所提出的方法,通过应用于人类听力衰竭、心脏异体移植排斥和神经母细胞瘤的微阵列基因表达研究的实际数据来评估这些方法的性能。这里提出的工作将有助于用图形结构建模基因组数据的统计方法,研究复杂表型和生物系统以及高维数据分析的方法,并提供对各种数据集所代表的每个临床领域的见解,以评估这些新方法。在此资助下开发的所有项目和详细文件将通过万维网免费提供给感兴趣的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongzhe Lee其他文献
Hongzhe Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongzhe Lee', 18)}}的其他基金
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
- 批准号:
9447252 - 财政年份:2017
- 资助金额:
$ 29.07万 - 项目类别:
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
- 批准号:
9983111 - 财政年份:2017
- 资助金额:
$ 29.07万 - 项目类别:
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
- 批准号:
10707092 - 财政年份:2017
- 资助金额:
$ 29.07万 - 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
- 批准号:
8500393 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
- 批准号:
8643260 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
- 批准号:
8237259 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Training in Ophthalmic Statistical Genetics and Bioinformatics
眼科统计遗传学和生物信息学培训
- 批准号:
8075190 - 财政年份:2011
- 资助金额:
$ 29.07万 - 项目类别:
相似海外基金
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2015
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2014
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Solution to the Fokker Planck Kolmogorov Equation using Hoeffding's Functional Analysis of Variance Decomposition
使用 Hoeffding 方差分解泛函分析求解 Fokker Planck Kolmogorov 方程
- 批准号:
464881-2014 - 财政年份:2014
- 资助金额:
$ 29.07万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2013
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2011
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Investigations in Robust Analysis of Variance
稳健方差分析研究
- 批准号:
9209709 - 财政年份:1992
- 资助金额:
$ 29.07万 - 项目类别:
Continuing Grant
Inference problems in inverse gaussian distribution, analysis of variance models and super population models
逆高斯分布的推理问题、方差模型和超总体模型的分析
- 批准号:
3661-1990 - 财政年份:1992
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Inference problems in inverse gaussian distribution, analysis of variance models and super population models
逆高斯分布的推理问题、方差模型和超总体模型的分析
- 批准号:
3661-1990 - 财政年份:1991
- 资助金额:
$ 29.07万 - 项目类别:
Discovery Grants Program - Individual
Robust Analysis of Variance and Analysis of Designed Experiments
稳健方差分析和设计实验分析
- 批准号:
9001860 - 财政年份:1990
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant