Methods for Integrative Genomic Data Analysis

综合基因组数据分析方法

基本信息

  • 批准号:
    10734227
  • 负责人:
  • 金额:
    $ 45.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Abstract The broad, long-term objective of this project concerns the development of novel statistical methods, theory and computational tools for statistical modeling of large-scale multiple high-dimensional genomic data motivated by im- portant biological questions and experiments. New high-throughput technologies and next generation sequencing are generating various types of very high-dimensional genetics, genomic, epigenomics, metabolomics data in order to obtain an integrative understanding of various complex phenotypes. Integrative analysis of genomic data from differ- ent populations and tissues can potentially increase the power of detecting disease associated genetic variants and genes, and provide the possibility of making causal inference in genomic studies, eventually leading to understanding of the disease causal pathways and genomics-based risk prediction. The specific aims of the current project are to develop new statistical models and methods for polygenic risk score (PRS) prediction and for integrative analysis of eQTL and genome wide genetic association (GWAS) data for identification of possible causal genes and pathways of complex diseases. In order to effectively utilize data across different ethnicity groups and different tissues, this project will develop several novel transfer learning methods in order to achieve better estimate of polygenic risk scores and to increase the power of detecting trait associated variants in minority populations. The project will also develop method of meta-learning to predict ethnicity- and tissue-specific gene expressions in order to increase the power of transcriptome-wide association analysis (TWAS). Finally, statistical methods for genome-wide co-localization analysis that can effectively integrate GTEx data with GWAS association summary statistics will be developed in order to identify possible causal disease genes and pathways. These methods hinge on novel integration of methods for multiple re- lated high-dimensional regressions, high-dimensional Gaussian sequence models and subspace estimation. The new methods can be applied to different types of genomic data and will ideally help facilitate the identification of genes as well as the biological pathways underlying various complex human diseases and genomics-based disease risk predic- tion. The work proposed here will contribute statistical methodology and theory for transfer learning and meta-learning in high-dimensional genomic data to study complex phenotypes and to offer insights into each of the biological areas represented by the various data sets, including Alzheimer's disease, cardiometabolic syndrome, and chronic kidney disease. All algorithms, software tools and the resulting polygenic risk score models and tissue-specific gene expres- sion prediction models together with detailed documentation will be made available on the GitHub.
摘要

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of Heterogeneous Restricted Mean Survival Time Using Random Forest.
  • DOI:
    10.3389/fgene.2020.587378
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu M;Li H
  • 通讯作者:
    Li H
Inference of microbial covariation networks using copula models with mixture margins.
使用带有混合边缘的Copula模型的微生物协方差网络的推断。
Global and Simultaneous Hypothesis Testing for High-Dimensional Logistic Regression Models.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongzhe Lee其他文献

Hongzhe Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongzhe Lee', 18)}}的其他基金

Methods for Integrative Genomic Data Analysis
综合基因组数据分析方法
  • 批准号:
    9752369
  • 财政年份:
    2018
  • 资助金额:
    $ 45.26万
  • 项目类别:
Methods for Integrative Genomic Data Analysis
综合基因组数据分析方法
  • 批准号:
    10188561
  • 财政年份:
    2018
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
  • 批准号:
    9447252
  • 财政年份:
    2017
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
  • 批准号:
    9983111
  • 财政年份:
    2017
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Microbiome and Metagenomics
微生物组和宏基因组学的统计方法
  • 批准号:
    10707092
  • 财政年份:
    2017
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
  • 批准号:
    8500393
  • 财政年份:
    2012
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
  • 批准号:
    8643260
  • 财政年份:
    2012
  • 资助金额:
    $ 45.26万
  • 项目类别:
Statistical Methods for Next-Generation Sequence Data
下一代序列数据的统计方法
  • 批准号:
    8237259
  • 财政年份:
    2012
  • 资助金额:
    $ 45.26万
  • 项目类别:
Training in Ophthalmic Statistical Genetics and Bioinformatics
眼科统计遗传学和生物信息学培训
  • 批准号:
    8075190
  • 财政年份:
    2011
  • 资助金额:
    $ 45.26万
  • 项目类别:
Training in Ophthalmic Statistical Genetics and Bioinformatics
眼科统计遗传学和生物信息学培训
  • 批准号:
    8494622
  • 财政年份:
    2011
  • 资助金额:
    $ 45.26万
  • 项目类别:

相似海外基金

Differences in Tumor Biology of Multiple Myeloma in Association with African Ancestry
与非洲血统相关的多发性骨髓瘤肿瘤生物学差异
  • 批准号:
    10656009
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Identifying placental injury pathways in women of African ancestry with severe preeclampsia
确定患有严重先兆子痫的非洲血统女性的胎盘损伤途径
  • 批准号:
    10742342
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Community to Molecular Approaches in Early Screening and Diagnosis to Promote Equitable Outcomes Through the Continuum of Care in Cancer Among Populations of African Ancestry
社区采用分子方法进行早期筛查和诊断,通过对非洲裔人群癌症的持续护理来促进公平结果
  • 批准号:
    10754038
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Genomics of Renal Cancer in Patients of African Ancestry
非洲血统患者肾癌的基因组学
  • 批准号:
    10648882
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Improving Genetic Diagnosis for African Ancestry Populations
改善非洲血统人群的基因诊断
  • 批准号:
    10736833
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Genetics of PTSD in African Ancestry Populations: Enhancing discovery by addressing inequality
非洲血统人群 PTSD 的遗传学:通过解决不平等问题加强发现
  • 批准号:
    10750547
  • 财政年份:
    2023
  • 资助金额:
    $ 45.26万
  • 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测
  • 批准号:
    10445739
  • 财政年份:
    2022
  • 资助金额:
    $ 45.26万
  • 项目类别:
Microfluidic Droplet Organoids to Decipher the Tumor Heterogeneity in CRC of African Ancestry
微流控液滴类器官破译非洲血统结直肠癌肿瘤异质性
  • 批准号:
    10355977
  • 财政年份:
    2022
  • 资助金额:
    $ 45.26万
  • 项目类别:
Multi-omic Risk Prediction of Chronic Obstructive Pulmonary Disease in European- and African-Ancestry Populations_Supplement
欧洲和非洲血统人群慢性阻塞性肺疾病的多组学风险预测_补充
  • 批准号:
    10772527
  • 财政年份:
    2022
  • 资助金额:
    $ 45.26万
  • 项目类别:
Understanding the contribution of genotype-by-lifestyle interactions to cardiometabolic risk in individuals of east African ancestry
了解基因型与生活方式的相互作用对东非血统个体心脏代谢风险的影响
  • 批准号:
    10537570
  • 财政年份:
    2022
  • 资助金额:
    $ 45.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了