Integrative And Molecular Studies Of Pain And Pain Control

疼痛和疼痛控制的综合和分子研究

基本信息

项目摘要

Overview: Our research program addresses basic molecular and physiological processes of nociceptive transmission in the central and peripheral nervous systems and new ways to effectively treat intractable pain. The molecular research is performed using animal and in vitro, cell-based models. We concentrate on primary afferent pain-sensing neurons located in dorsal root ganglion (DRG) that innervate the skin and deep tissues and their connections in the dorsal spinal cord, which is the first site of synaptic information processing for pain. Our research has identified the DRG and spinal cord as loci of neuronal plasticity and altered gene expression in persistent pain states. The mechanisms of transduction of physical pain stimuli are also under investigation through examination of events in damaged or inflamed peripheral tissue and using reductionistic approaches such as cloned thermal and chemo-responsive ion channels expressed in heterologous cell systems or naturally expressed in primary cultures of dorsal root ganglion. Our goals are (1) to understand the molecular and cell biological mechanisms of acute and chronic pain at the initial steps in the pain pathway, (2) mechanisms underlying human chronic pain disorders, and (3) to use this knowledge to devise new treatments for pain. New Treatments for Pain: We address the new treatment goal by a translational research and human clinical trials program aimed at developing new analgesic treatments for severe pain. The current approach is based on our studies of pain transduction through the vanilloid receptor 1 (TRPV1). This molecule is a heat-sensitive calcium/sodium ion channel and converts painful heat into nerve action potentials by opening the pore of the ion channel, which then depolarizes pain-sensing nerve endings and triggers an action potential that is conducted to the spinal cord. Capsaicin, a vanilloid chemical and the active ingredient in hot pepper, also stimulates channel opening. We use a very potent vanilloid called resiniferatoxin (RTX) to prop open the ion channel, thereby causing calcium cytotoxicity and death of a specific class of pain-sensing neurons. This proved to be a very effective means of pain control in several pre-clinical models and via several routes of administration. Some routes will lead to cell death (e.g. intraganglionic injections) other routes do n. We have established an inter-institute working group with NIDA's Division of Pharmaco-Therapeutics and Medical Consequences of Drug Abuse to bring this novel treatment to human clinical trial. The working group consists of experts on chemistry and manufacture, toxicological, neurobiological, medical, and regulatory affairs as well as pain management specialists and pharmacologists from our group. We have also established procedures for obtaining the natural product from which the active drug is extracted and procedures for isolation, purification and formulation of the drug product that are compliant with Food and Drug Administration (FDA) regulations. We are presently finalizing the toxicology study and preparing the Investigational New Drug Application for submission to the FDA. We are also finalizing the human clinical protocol with the Institutional Review Board. The RTX cell deletion treatment will first be tested for its ability to control cancer pain in patients with advanced disease. If it is safe and effective, we shall conduct a second protocol for treatment of head and neck cancer and then work on controlling other chronic pain conditions such as trigeminal neuralgia, arthritis and neuropathic pain. Clinical Pain Mechanisms: Chronic neuropathic pain conditions, either in the body or the oro-facial region, are difficult to treat effectively. They are also difficult to explore via pre-clinical investigations since informative animal models with clearly predictive value are not available. One particularly difficult human neuropathic pain problem is Complex Regional Pain Syndrome (CRPS, formerly called reflex sympathetic dystrophy). This syndrome arises subsequent to a nerve injury or trauma and is over-represented in women. We are testing the hypothesis that an autoimmune response is provoked to one or more proteins from small diameter pain-sensing axons (C-fiber or A-delta neurons). We have established a very sensitive assay to test for the presence of autoantibodies to tissue proteins in general. We are applying the method to measure antibodies against primary afferent neuronal proteins in the serum of patients with CRPS as well as other neuropathies and nervous system disorders. For example we are examining patients with other autoimmune diseases that exhibit neuropathic pain to determine if there is an overlap in antigen profiles indicative of a common denominator or general mechanism. Other controls involve patients that have experienced a nerve injury but do not develop CRPS to establish clinical specificity and a series of positive and negative controls . One autoimmune disorder we are investigating is Sjogren's syndrome (SS). Approximately 30 % of patients develop a small fiber painful neuropathy, which frequently progresses to a mixed large and small fiber neuropathy. Thus, C-fibers appear to be an autoimmune target in this syndrome, interestingly, like CRPS, SS also is manifested predominantly in women. We are collaborating with the Gene Therapy and Therapeutics Branch, NIDCR to examine sera from Sjogren's patients to test against our antigen panel. We have had great success in initial studies with known antigens in SS and other autoimmune disorders (Stiff Person Syndrome and Type 1 Diabetes). We have adapted the assay to microtiter plate format and to run on our robotic workstation. As time progresses, we shall expand the analyses other cohorts of chronic pain patients to establish whether the underlying mechanisms are generalized or specific to these types of nerve injury-induced neuropathies. Multiple antigen profiling yields a new progressive level of understanding for complex human disease states. Basic Pain Mechanisms: Underlying the translational studies are our investigations of molecular regulation of gene expression, neuronal function, behavior, and mechanisms of pain transduction. We are systematically investigating the first three steps in the pain pathway beginning with injured peripheral tissue, the dorsal root ganglion and the dorsal spinal cord. This approach provides a comprehensive and informative view of nociceptive process. The dorsal root ganglion is quite small but its analysis is made possible by the extensive use of reverse-transcription-PCR, which allows us to make multiple measurements on such small tissue samples. Our studies reveal the dynamic modulation of gene expression at all three steps in a more complex fashion than previously hypothesized. We have examined novel molecules as well as neuropeptide, cytokine and chemokine expression and identified prominent roles for new, key molecules with distinct combinatorial patterns of expression among the three tissues. The functional implications of our studies on cytokines suggest a new role for monocyte chemoattractant protein 1 in nociceptive DRG neurons. We are trying to evaluate the effects of C-fiber activation and cytokines on immune cell dynamics and endothelial responses as the triggers for neurogenic inflammation and plasma extravasation in real time. We hope to obtain a fundamental understanding of the relationships between tissue damage, inflammation and pain sensation. In a broader framework, these studies fundamentally explore the molecular basis of synaptic plasticity. We hypothesize modularity in neuronal responses to new levels of synaptic or pharmacological input that will be relevant not only to pain, but also to situations such as learning, neurological disorders like epilepsy, and drug abuse
概述:我们的研究项目致力于解决中枢和周围神经系统中伤害性传播的基本分子和生理过程,以及有效治疗顽固性疼痛的新方法。分子研究是使用动物和体外细胞模型进行的。我们专注于位于背根神经节 (DRG) 的初级传入痛觉神经元,这些神经元支配皮肤和深层组织及其在背脊髓中的连接,背脊髓是疼痛突触信息处理的第一个部位。我们的研究已确定背根神经节和脊髓是神经元可塑性的位点,并在持续疼痛状态下改变基因表达。身体疼痛刺激的转导机制也正在通过检查受损或发炎的外周组织中的事件并使用简化方法(例如在异源细胞系统中表达或在背根神经节原代培养物中自然表达的克隆热和化学反应离子通道)进行研究。我们的目标是(1)在疼痛途径的初始步骤了解急性和慢性疼痛的分子和细胞生物学机制,(2)人类慢性疼痛疾病的潜在机制,以及(3)利用这些知识设计新的疼痛治疗方法。 新的疼痛治疗方法:我们通过转化研究和人体临床试验计划来实现新的治疗目标,旨在开发新的治疗严重疼痛的镇痛疗法。 目前的方法基于我们对香草酸受体 1 (TRPV1) 疼痛传导的研究。该分子是热敏钙/钠离子通道,通过打开离子通道的孔将疼痛热转化为神经动作电位,然后使疼痛敏感神经末梢去极化并触发传导至脊髓的动作电位。辣椒素是一种香草类化学物质,也是辣椒中的活性成分,也能刺激通道开放。我们使用一种名为树脂毒素 (RTX) 的强效香草素来支持离子通道的打开,从而导致钙细胞毒性和特定类别的疼痛感应神经元的死亡。在多个临床前模型中,通过多种给药途径,这被证明是一种非常有效的疼痛控制方法。 有些途径会导致细胞死亡(例如神经节内注射),其他途径则不会。我们与 NIDA 药物治疗和药物滥用医疗后果部门建立了一个机构间工作组,将这种新疗法引入人体临床试验。该工作组由化学和制造、毒理学、神经生物学、医学和监管事务方面的专家以及我们团队的疼痛管理专家和药理学家组成。我们还建立了符合食品和药物管理局 (FDA) 法规的获取天然产物(从中提取活性药物)的程序以及分离、纯化和配制药品的程序。我们目前正在完成毒理学研究,并准备向 FDA 提交研究性新药申请。我们还正在与机构审查委员会最终确定人体临床方案。 RTX 细胞缺失疗法将首先测试其控制晚期疾病患者癌症疼痛的能力。如果安全有效,我们将实施第二个头颈癌治疗方案,然后致力于控制其他慢性疼痛疾病,如三叉神经痛、关节炎和神经性疼痛。 临床疼痛机制:慢性神经性疼痛,无论是身体还是口面部区域,都很难有效治疗。 由于没有具有明确预测价值的信息丰富的动物模型,因此也很难通过临床前研究来探索它们。一种特别困难的人类神经性疼痛问题是复杂区域疼痛综合征(CRPS,以前称为反射性交感神经营养不良)。这种综合征是在神经损伤或创伤后出现的,并且在女性中较多见。我们正在测试这样的假设:自身免疫反应是由小直径疼痛感知轴突(C 纤维或 A-delta 神经元)的一种或多种蛋白质引起的。我们已经建立了一种非常灵敏的测定法来测试一般组织蛋白的自身抗体的存在。 我们正在应用该方法来测量 CRPS 以及其他神经病和神经系统疾病患者血清中针对初级传入神经元蛋白的抗体。例如,我们正在检查患有其他表现出神经性疼痛的自身免疫性疾病的患者,以确定抗原谱是否存在重叠,从而表明共同点或一般机制。 其他对照包括经历过神经损伤但未出现 CRPS 的患者,以建立临床特异性以及一系列阳性和阴性对照。我们正在研究的一种自身免疫性疾病是干燥综合征 (SS)。大约 30% 的患者会出现小纤维疼痛性神经病,这种病经常进展为混合性大纤维和小纤维神经病。因此,C 纤维似乎是该综合征的自身免疫靶标,有趣的是,与 CRPS 一样,SS 也主要出现在女性中。 我们正在与 NIDCR 基因治疗和治疗部门合作,检查干燥症患者的血清,以针对我们的抗原组进行测试。我们在 SS 和其他自身免疫性疾病(僵人综合症和 1 型糖尿病)的已知抗原的初步研究中取得了巨大成功。我们已将该测定调整为微量滴定板格式并在我们的机器人工作站上运行。随着时间的推移,我们将扩大对其他慢性疼痛患者群体的分析,以确定这些类型的神经损伤引起的神经病的潜在机制是普遍的还是特定的。多重抗原分析使我们对复杂的人类疾病状态的理解达到了新的进步水平。 基本疼痛机制:转化研究的基础是我们对基因表达、神经元功能、行为和疼痛传导机制的分子调控的研究。我们正在系统地研究疼痛通路的前三个步骤,从受伤的外周组织、背根神经节和背脊髓开始。这种方法提供了伤害感受过程的全面且信息丰富的视图。背根神经节非常小,但通过广泛使用逆转录 PCR 使其分析成为可能,这使我们能够对如此小的组织样本进行多次测量。我们的研究揭示了基因表达在所有三个步骤中的动态调节,其方式比之前假设的更为复杂。我们检查了新分子以及神经肽、细胞因子和趋化因子的表达,并确定了在三种组织中具有不同表达组合模式的新关键分子的显着作用。我们对细胞因子的研究的功能意义表明单核细胞趋化蛋白 1 在伤害性 DRG 神经元中的新作用。我们正在尝试实时评估 C 纤维激活和细胞因子对免疫细胞动力学和内皮反应的影响,作为神经源性炎症和血浆外渗的触发因素。我们希望对组织损伤、炎症和痛觉之间的关系有一个基本的了解。在更广泛的框架内,这些研究从根本上探讨了突触可塑性的分子基础。我们假设神经元对新水平的突触或药理输入的反应具有模块化,这不仅与疼痛有关,还与学习、癫痫等神经系统疾病和药物滥用等情况有关

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J. Iadarola其他文献

Thermosensory Loss is Correlated with Primary Afferent Nociceptive Fibers Deletion in Postmortem Dorsal Root Ganglion and Spinal Cord in a Cancer Patient Treated with Resiniferatoxin
热感觉丧失与接受树脂毒素治疗的癌症患者死后背根神经节和脊髓中初级传入伤害性纤维的缺失相关
  • DOI:
    10.1016/j.jpain.2024.01.145
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Gustavo Serrano-Berríos;Matthew R. Sapio;Pranavi Nara;Allison Manalo;Andre Ghetti;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Targeting Peripheral and Central Sensitization of Morton’s Neuroma Pain
针对莫顿神经瘤疼痛的外周和中枢敏化
  • DOI:
    10.1016/j.jpain.2024.01.142
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Shruthi Satyanarayana;Eleni Frangos;Matthew R. Sapio;Misha Backonja;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Characterization Of Distinct Nociceptive Populations In The Human Drg
人类背根神经节中不同伤害感受群体的特征描述
  • DOI:
    10.1016/j.jpain.2023.02.059
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Michael J. Iadarola;Matthew R. Sapio;Dragan Maric;André Ghetti;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Cholecystokinin turnover in brain
  • DOI:
    10.1016/0006-8993(83)90751-5
  • 发表时间:
    1983-10-16
  • 期刊:
  • 影响因子:
  • 作者:
    James L. Meek;Michael J. Iadarola;Osvaldo Giorgi
  • 通讯作者:
    Osvaldo Giorgi
Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities
生物标志物的发现与验证以辅助安全有效止痛疗法的开发:挑战与机遇
  • DOI:
    10.1038/s41582-020-0362-2
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    33.100
  • 作者:
    Karen D. Davis;Nima Aghaeepour;Andrew H. Ahn;Martin S. Angst;David Borsook;Ashley Brenton;Michael E. Burczynski;Christopher Crean;Robert Edwards;Brice Gaudilliere;Georgene W. Hergenroeder;Michael J. Iadarola;Smriti Iyengar;Yunyun Jiang;Jiang-Ti Kong;Sean Mackey;Carl Y. Saab;Christine N. Sang;Joachim Scholz;Marta Segerdahl;Irene Tracey;Christin Veasley;Jing Wang;Tor D. Wager;Ajay D. Wasan;Mary Ann Pelleymounter
  • 通讯作者:
    Mary Ann Pelleymounter

Michael J. Iadarola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J. Iadarola', 18)}}的其他基金

Integrative And Molecular Studies Of Pain & Pain Control
疼痛的综合和分子研究
  • 批准号:
    6814532
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7967114
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
INTEGRATIVE AND MOLECULAR STUDIES OF PAIN AND PAIN CONTROL
疼痛和疼痛控制的综合分子研究
  • 批准号:
    6432046
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Integrative/Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合/分子研究
  • 批准号:
    6531938
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
  • 批准号:
    8344127
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8552558
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    8553351
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8736696
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7733937
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:
Integrative And Molecular Studies Of Pain And Pain Contr
疼痛和疼痛控制的综合和分子研究
  • 批准号:
    6966492
  • 财政年份:
  • 资助金额:
    $ 179.58万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 179.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了