Dimensionality Reduction and Search for Analyzing Protein Structure
蛋白质结构分析的降维和搜索
基本信息
- 批准号:7619644
- 负责人:
- 金额:$ 17.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-11 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBiochemistryBiologyCollaborationsComplexComputer AssistedCouplingDevelopmentDiseaseDockingDrug DesignEnzymesFundingGoalsKnowledgeLightMacromolecular ComplexesMathematicsMedical centerMentorsMethodsMolecularMolecular ConformationMolecular MachinesOutputPhysiologicalProteinsResearch ActivityRiceRunningSchoolsScientistShapesStagingStudentsSystemTexasTrainingUniversitiesUpdateWomanWorkcomputer sciencegirlshigh schoolinterdisciplinary collaborationmacromolecular assemblynovelprogramsprotein complexprotein functionprotein structure
项目摘要
DESCRIPTION (provided by applicant): It is virtually impossible to find a physiological function that does not actively involve single proteins or protein complexes at a certain stage. There is a huge gap in our knowledge of how protein structure relates to protein function or to cooperative mechanisms in macromolecular complexes, although these issues have been challenging scientists for many years. There is also great promise that understanding how systems such as proteins and protein complexes work, will impact the rational design of drugs and enzymes, and suggest better treatments for certain diseases.
The intellectual merit of this project lies in the development of a novel framework to explore the conformational space of proteins and protein complexes. Our goal is to generate geometrically-distinct low energy conformations of the above systems. We will pursue the development of dimensionality reduction methods that are tailored to complex molecular systems and can be used to represent such systems compactly. Using those representations we will aggressively explore the conformational landscape of proteins, initially, and protein complexes, at a later stage. We believe that the tight coupling of dimensionality reduction and efficient search algorithms will result in a method that can reason about large systems with some probabilistic guarantees, a presently elusive goal. A distinguishing feature of our method is that we will modify and update our low-dimensional representations as the exploration of the conformational landscape progresses in order to best represent the considered system as it evolves. The output of our work can be used to study the possible shapes of a biomacromolecule and shed light on its function. As far as applications are concerned, we will first tackle problems that relate to molecular docking and computer-assisted drug design. In the long run, our goal is to study molecular machines and macromolecular assemblies in collaboration with experimentalists. The broader impact of the project is implemented through (a) interdisciplinary collaborations with the Texas Medical Center which will affect students in applied and computational mathematics, computer science, biology, and biochemistry, (b) training, mentoring and involvement in research activities of undergraduate, graduate and postdoctoral students, (c) course development at Rice University, (d) mentoring of women undergraduate students in computer science, and (e) participation in an NSF funded program of Rice University and the Houston Independent School District whose goal is to attract high school girls to fields where they are underrepresented.
描述(申请人提供):在某一阶段,几乎不可能找到一种不涉及单一蛋白质或蛋白质复合体的生理功能。尽管这些问题多年来一直困扰着科学家,但在我们对蛋白质结构如何与蛋白质功能或大分子复合体中的合作机制相关的知识方面存在着巨大的差距。了解蛋白质和蛋白质复合体等系统的工作原理也有很大的希望,这将影响药物和酶的合理设计,并为某些疾病提供更好的治疗方法。
这个项目的智力价值在于开发了一个新的框架来探索蛋白质和蛋白质复合体的构象空间。我们的目标是产生上述体系的几何上不同的低能构象。我们将致力于为复杂的分子系统量身定做的降维方法的发展,并可用于紧凑地表示此类系统。使用这些表示法,我们将积极探索蛋白质的构象图景,最初,以及稍后阶段的蛋白质复合体。我们相信,降维和高效搜索算法的紧密耦合将导致一种方法,可以在某种概率保证下对大型系统进行推理,这是目前难以实现的目标。我们方法的一个显著特点是,随着构象景观的探索进展,我们将修改和更新我们的低维表示法,以便在所考虑的系统演化时最好地表示它。我们的工作成果可以用来研究生物大分子的可能形状,并阐明其功能。在应用方面,我们将首先解决与分子对接和计算机辅助药物设计有关的问题。从长远来看,我们的目标是与实验者合作研究分子机器和大分子组装。该项目的更广泛影响通过以下方式实现:(A)与德克萨斯医学中心开展跨学科合作,这将影响到应用数学和计算数学、计算机科学、生物学和生物化学方面的学生;(B)对本科生、研究生和博士后进行培训、辅导和参与研究活动;(C)在莱斯大学开发课程;(D)辅导计算机科学方面的女本科生;以及(E)参与国家科学基金会资助的莱斯大学和休斯顿独立学区的一项计划,其目标是吸引高中女生进入其代表性不足的领域。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracing conformational changes in proteins.
- DOI:10.1186/1472-6807-10-s1-s1
- 发表时间:2010-05-17
- 期刊:
- 影响因子:0
- 作者:Haspel N;Moll M;Baker ML;Chiu W;Kavraki LE
- 通讯作者:Kavraki LE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia E. Kavraki其他文献
Task and Motion Planning for Execution in the Real
真实执行的任务和运动规划
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.8
- 作者:
Tianyang Pan;Rahul Shome;Lydia E. Kavraki - 通讯作者:
Lydia E. Kavraki
Editorial: special issue on the 2014 “Robotics: Science & Systems” conference
- DOI:
10.1007/s10514-015-9482-8 - 发表时间:
2015-08-28 - 期刊:
- 影响因子:4.300
- 作者:
Lydia E. Kavraki;Maxim Likhachev - 通讯作者:
Maxim Likhachev
Lydia E. Kavraki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia E. Kavraki', 18)}}的其他基金
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10188196 - 财政年份:2021
- 资助金额:
$ 17.81万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10615697 - 财政年份:2021
- 资助金额:
$ 17.81万 - 项目类别:
PROTEAN-CR: Proteomics Toolkit for Ensemble Analysis in Cancer Research
PROTEAN-CR:用于癌症研究中整体分析的蛋白质组学工具包
- 批准号:
10398904 - 财政年份:2021
- 资助金额:
$ 17.81万 - 项目类别:
NLM Training Program in Biomedical Informatics & Data Science for Predoctoral and Postdoctoral Fellows
NLM 生物医学信息学培训计划
- 批准号:
9526234 - 财政年份:2017
- 资助金额:
$ 17.81万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9332344 - 财政年份:2016
- 资助金额:
$ 17.81万 - 项目类别:
Structure-based selection of tumor-antigens for T-cell based immunotherapy
基于结构的 T 细胞免疫治疗肿瘤抗原选择
- 批准号:
9186273 - 财政年份:2016
- 资助金额:
$ 17.81万 - 项目类别:
COMPUTATIONAL ANALYSIS OF PROTEIN COMPLEX BINDING
蛋白质复合物结合的计算分析
- 批准号:
8171877 - 财政年份:2010
- 资助金额:
$ 17.81万 - 项目类别:
STRUCTURAL AND THERMODYNAMICAL PROPERTIES OF COMPLEXES FORMED BY THE HUMAN COMP
人类复合物形成的结构和热力学性质
- 批准号:
7956267 - 财政年份:2009
- 资助金额:
$ 17.81万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant