MOLECULAR DYNAMICS SIMULATION OF VESICLE FUSION MECHANISMS
囊泡融合机制的分子动力学模拟
基本信息
- 批准号:7601433
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureBiological ModelsComputer Retrieval of Information on Scientific Projects DatabaseCoupledDataFundingGrantIndividualInfectionInstitutionKineticsMeasurementMembrane FusionModelingPhysiologicalProcessReactionResearchResearch PersonnelResolutionResourcesSeedsSimulateSourceStagingStructureSynapsesTechniquesUnited States National Institutes of HealthVesicleVirusbasecluster computingmillisecondmolecular dynamicsneurotransmissionnovelparticlesimulationsupercomputer
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Membrane fusion is a key stage in cellular import and export processes such as infection by enveloped viruses and synaptic neurotransmission. Because obtaining high-resolution structural and kinetic measurements of fusion intermediates has been challenging experimentally, membrane fusion is a natural target for simulation studies. For small vesicles, we have performed a few long simulations for fusion and then, using these long trajectories as seeds, utilized the power of the Folding @Home distributed computing project to simulate via molecular dynamics the reaction trajectories of 10,000 individual fusion reactions. Using a novel analytic technique based on Markovian State Models, we have combined these trajectories to predict the structures and kinetics of fusion intermediates on a sub-millisecond timescale. We are now applying the same approach to larger and more physiologically relevant fusion simulations. Current simulations calculate the dynamics of >1,000,000 particles over microseconds, multiplied over multiple reaction trajectories. At this scale, it is critical to have a large, tightly coupled supercomputer to perform the initial trajectories. We will then leverage these trajectories using the highly parallel but loosely coupled architecture of Folding @Home to obtain reaction kinetics and intermediates for fusion. We propose to use the PSC Big Ben tightly-coupled supercomputer to compute these long-timescale trajectories. Using these data, we hope to generate more accurate models of the fusion process on a scale consistent with experimental model systems and with physiological vesicles, thus achieving a new understanding of the fusion reaction.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
膜融合是细胞输入和输出过程中的关键阶段,例如包膜病毒感染和突触神经传递。由于获得高分辨率的结构和动力学测量的融合中间体一直具有挑战性的实验,膜融合是一个自然的目标模拟研究。对于小囊泡,我们已经进行了一些长的融合模拟,然后使用这些长轨迹作为种子,利用Folding @Home分布式计算项目的力量,通过分子动力学模拟10,000个单独融合反应的反应轨迹。使用一种新的分析技术的基础上马尔可夫状态模型,我们结合这些轨迹预测的结构和动力学的融合中间体在亚毫秒的时间尺度。我们现在正在将相同的方法应用于更大和更生理相关的融合模拟。目前的模拟计算超过1,000,000个粒子在微秒内的动力学,乘以多个反应轨迹。在这种规模下,拥有一台大型、紧密耦合的超级计算机来执行初始轨迹是至关重要的。然后,我们将利用Folding @Home的高度并行但松散耦合的架构来利用这些轨迹,以获得反应动力学和聚变中间体。我们建议使用PSC大本钟紧耦合超级计算机来计算这些长时间尺度的轨迹。利用这些数据,我们希望在与实验模型系统和生理囊泡一致的规模上生成更准确的融合过程模型,从而实现对融合反应的新理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VIJAY S PANDE其他文献
VIJAY S PANDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VIJAY S PANDE', 18)}}的其他基金
Computation and Repurposing to identfy antivirals directed against dominant
计算和重新利用以确定针对显性病毒的抗病毒药物
- 批准号:
8643867 - 财政年份:2014
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
8364247 - 财政年份:2011
- 资助金额:
$ 0.03万 - 项目类别:
LONG TIME SIMULATIONS OF PROTEIN FOLDING: A SYNERGISTIC APPROACH
蛋白质折叠的长时间模拟:协同方法
- 批准号:
8364333 - 财政年份:2011
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
8171825 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
7956078 - 财政年份:2009
- 资助金额:
$ 0.03万 - 项目类别:
MOLECULAR DYNAMICS SIMULATION OF VESICLE FUSION MECHANISMS
囊泡融合机制的分子动力学模拟
- 批准号:
7723184 - 财政年份:2008
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
7723118 - 财政年份:2008
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
7601290 - 财政年份:2007
- 资助金额:
$ 0.03万 - 项目类别:
FOLDING@HOME: SIMULATING PROTEIN FOLDING WITH MASSIVELY PARALLEL DISTRIBUTED CO
FOLDING@HOME:使用大规模并行分布式 CO 模拟蛋白质折叠
- 批准号:
7181648 - 财政年份:2004
- 资助金额:
$ 0.03万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 0.03万 - 项目类别: