Development of a quasi-CBCT system for image-guided radiotherapy

图像引导放射治疗准CBCT系统的开发

基本信息

  • 批准号:
    7575170
  • 负责人:
  • 金额:
    $ 10.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cone-beam computed tomography (CBCT) is an important online imaging modality for image-guided radiotherapy (IGRT) as well as other forms of image guided interventions. However, current CBCT image quality is inferior to that of the diagnostic fan beam CT. The image quality problem is inherent in the design of the current CBCT system, which is composed of a point x-ray source and a two-dimensional flat panel imager (FPI). Excessive x-ray scatters, the use of low performance FPI, and reconstruction degradation at large cone angles are three major sources of the degradation of image quality. The inferior image quality of CBCT limits the use of this modality for important new IGRT treatment techniques. We have designed a novel quasi-CBCT scanning system comprising a linear scan x-ray source and a linear discrete x-ray detector array. This imaging system will overcome the defects inherent in FPI-based CBCT and thereby produce online images with diagnostic quality. The linear x-ray tube and detector array are aligned perpendicular to and within the rotation plane, respectively. The x-ray beams are narrowly collimated into fan beams and scan in the z-direction electronically. This system will produce diagnostic quality online images for IGRT due to its scatter rejection mechanism and high-performance discrete x-ray detectors. Besides improved image quality, this system also has larger clearance due to its slim structure. Diagnostic online images will facilitate new IGRT techniques with better tumor killing and normal tissue sparing. This innovative design will also have huge impact on other forms of image guided intervention as well as diagnostic imaging. A quasi-CBCT bench-top system will be built in this research. The feasibility and improvement of image quality of the quasi-CBCT system will be studied. Techniques and parameters for clinical implementation will be obtained. NARRATIVE In this project, we will develop a novel quasi cone beam computed tomography (CBCT) system for image guided radiotherapy (IGRT) as well as other forms of image guided interventions. This system will solve the inherent problem of current flat-panel based CBCT and will produce online images with diagnostic quality. Clinical implementation of this innovative online imaging system will facilitate new IGRT techniques that are impossible with the inferior image quality of current CBCT. Once developed, this mobile and diagnostic CT imaging system will have huge impacts on many other forms of medical practice.
描述(由申请人提供):锥形束计算机断层扫描(CBCT)是图像引导放射治疗(IGRT)以及其他形式的图像引导干预的重要在线成像模式。然而,目前CBCT图像质量不如诊断扇束CT。图像质量问题是当前CBCT系统设计中固有的,该系统由点X射线源和二维平板成像器(FPI)组成。过多的X射线散射、低性能FPI的使用以及大锥角下的重建退化是图像质量退化的三个主要来源。CBCT的图像质量较差,限制了这种模式用于重要的新IGRT治疗技术。我们设计了一种新型的准CBCT扫描系统,包括线性扫描X射线源和线性离散X射线探测器阵列。该成像系统将克服基于FPI的CBCT固有的缺陷,从而产生具有诊断质量的在线图像。线性X射线管和检测器阵列分别垂直于旋转平面和在旋转平面内对准。X射线束被严格准直成扇形束,并在z方向上电子扫描。由于其散射抑制机制和高性能离散X射线探测器,该系统将为IGRT生成诊断质量的在线图像。除了提高图像质量外,该系统还因其纤薄的结构而具有更大的间隙。诊断性在线图像将促进新的IGRT技术,具有更好的肿瘤杀伤和正常组织保护。这种创新设计也将对其他形式的图像引导干预以及诊断成像产生巨大影响。本研究将建立一个准CBCT实验台。研究了准CBCT系统的可行性和图像质量的改善。将获得临床实施的技术和参数。 叙述在这个项目中,我们将开发一种新型的准锥形束计算机断层扫描(CBCT)系统,用于图像引导放射治疗(IGRT)以及其他形式的图像引导干预。该系统将解决目前基于平板的CBCT的固有问题,并将产生具有诊断质量的在线图像。这种创新的在线成像系统的临床实施将促进新的IGRT技术,这是不可能的与当前CBCT的图像质量差。一旦开发出来,这种移动的诊断CT成像系统将对许多其他形式的医疗实践产生巨大影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiezhi Zhang其他文献

Tiezhi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiezhi Zhang', 18)}}的其他基金

Development of mmWave technology for safe radiation treatment delivery
开发用于安全放射治疗的毫米波技术
  • 批准号:
    10390402
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
DEVELOPMENT OF A NOVEL W-PG LAMINATE X-RAY TARGET WITH IMPROVED FOCAL SPOT POWER DENSITY
开发具有改进焦斑功率密度的新型 W-PG 层压 X 射线靶
  • 批准号:
    9375449
  • 财政年份:
    2017
  • 资助金额:
    $ 10.13万
  • 项目类别:
Development of a quasi-CBCT system for image-guided radiotherapy
图像引导放射治疗准CBCT系统的开发
  • 批准号:
    7406384
  • 财政年份:
    2008
  • 资助金额:
    $ 10.13万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 10.13万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 10.13万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 10.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了