Time-gated confocal Raman microscope

时间选通共焦拉曼显微镜

基本信息

项目摘要

DESCRIPTION (provided by applicant): Progress in the Life Sciences depends upon the development of new tools and instruments. Our ability to understand the function of living systems on a cellular and molecular level is greatly enhanced by imaging techniques capable of providing structural and chemical information in vivo. Raman spectroscopy is truly non-invasive, and it could provide significant information on the chemical composition and physical structure of biological tissues. This small-scale (R03) research proposal aims to develop an innovative approach for non-invasive microspectroscopy in order to unambiguously explore changes in chemical composition in cells and tissues. To achieve this goal, the PI will utilize the concept of time-gated Raman imaging, applied for the first time to microscopy to achieve confocal imaging with superior discrimination against the fluorescence background. It is expected that it will provide at least an order of magnitude improvement in the signal-to-noise ratio, which transforms into at least 100 times faster acquisition rates, while improving spatial resolution and eradicating possible ambiguities in resolving complex Raman bands. The first specific aim is building the prototype of a novel instrument and characterizing its performance. The second specific aim is pilot testing of a new instrument for molecular, cellular and tissue imaging for several model systems: 1) collagen self-organization and structural transformation, which leads to bone structure development, 2) photodegradation of retinal pigment epithelium cells, which is considered to be the major cause of blindness, and 3) early caries detection in dental tissues. Many medical research and diagnostic applications require microscopic molecular imaging with minimum invasiveness. Raman microspectroscopy, being a non-invasive, chemically specific technique for molecular imaging, suffers a dramatic drawback due to a strong fluorescent background, which significantly reduces the signal-to-noise ratio and makes it difficult to reveal the fine structure of vibrational bands. The proposed research provides a solution to this problem for microscopic imaging by time-gating the useful signal in a specially designed optical arrangement.
描述(由申请人提供):生命科学的进展取决于新工具和仪器的开发。通过能够提供体内结构和化学信息的成像技术,我们在细胞和分子水平上理解生命系统功能的能力大大增强。拉曼光谱是真正的非侵入性的,它可以提供重要的信息的化学组成和物理结构的生物组织。这项小规模(R03)研究提案旨在开发一种非侵入性显微光谱学的创新方法,以明确探索细胞和组织中化学成分的变化。为了实现这一目标,PI将利用时间选通拉曼成像的概念,首次应用于显微镜,以实现对荧光背景具有上级分辨力的共焦成像。预期它将提供信噪比的至少一个数量级的改进,这转换成至少快100倍的采集速率,同时提高空间分辨率并消除在解析复杂拉曼频带中可能的模糊性。第一个具体目标是建立一个新的仪器的原型和表征其性能。第二个具体目标是对用于几种模型系统的分子、细胞和组织成像的新仪器进行试点测试:1)胶原蛋白自组织和结构转化,这导致骨结构发育,2)视网膜色素上皮细胞的光降解,这被认为是失明的主要原因,以及3)牙齿组织中的早期龋齿检测。许多医学研究和诊断应用需要具有最小侵入性的显微分子成像。拉曼显微光谱是一种非侵入性的、化学特异性的分子成像技术,但由于强荧光背景而存在显著的缺点,这显著降低了信噪比,并且难以揭示振动带的精细结构。拟议的研究提供了一个解决这个问题的显微成像的时间门控有用的信号在一个专门设计的光学装置。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements.
  • DOI:
    10.1039/c5an01700a
  • 发表时间:
    2015-11-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Z;Petrov GI;Yakovlev VV
  • 通讯作者:
    Yakovlev VV
Stimulated Raman scattering: old physics, new applications.
  • DOI:
    10.1080/09500340903082671
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Yakovlev VV;Petrov GI;Zhang HF;Noojin GD;Denton ML;Thomas RJ;Scully MO
  • 通讯作者:
    Scully MO
Ex-CARS: exotic configuration for coherent anti-Stokes Raman scattering microspectroscopy utilizing two laser sources.
  • DOI:
    10.1002/jbio.201000042
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Yakovlev, Vladislav V.;Petrov, Georgi I.;Noojin, Gary D.;Harbert, Corey;Denton, Michael;Thomas, Robert
  • 通讯作者:
    Thomas, Robert
Structural changes of human serum albumin in response to a low concentration of heavy ions.
  • DOI:
    10.1002/jbio.201000044
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Saha, Anushree;Yakovlev, Vladislav V.
  • 通讯作者:
    Yakovlev, Vladislav V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladislav V. Yakovlev其他文献

Dynamics of CH/emn/em hydrogen bond networks probed by time-resolved CARS spectroscopy
通过时间分辨 CARS 光谱探测 CH/氢键网络的动力学
  • DOI:
    10.1039/d4sc03985h
  • 发表时间:
    2024-09-11
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Hanlin Zhu;Xinyu Deng;Vladislav V. Yakovlev;Delong Zhang
  • 通讯作者:
    Delong Zhang
How to drive CARS in reverse
如何倒车行驶汽车
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hokr;Gary D. Noojin;Georgi I. Petrov;Hope T. Beier;Robert J. Thomas;Benjamin A. Rockwell;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Towards high-accuracy noninvasive ocular melanoma imaging and prognostics
迈向高精度非侵入性眼部黑色素瘤成像和预后
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Controlling quasi-parametric amplifications: From multiple PT-symmetry phase transitions to non-Hermitian sensing
控制准参数放大:从多个 PT 对称相变到非厄米传感
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoxiong Wu;Kai Bai;Penghong Yu;Zhaohui Dong;Yanyan He;Jingui Ma;Vladislav V. Yakovlev;Meng Xiao;Xianfeng Chen;Luqi Yuan
  • 通讯作者:
    Luqi Yuan

Vladislav V. Yakovlev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladislav V. Yakovlev', 18)}}的其他基金

Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10477258
  • 财政年份:
    2021
  • 资助金额:
    $ 7.14万
  • 项目类别:
Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10218816
  • 财政年份:
    2021
  • 资助金额:
    $ 7.14万
  • 项目类别:
Brillouin Microscope for Biomedical Research
用于生物医学研究的布里渊显微镜
  • 批准号:
    10015304
  • 财政年份:
    2018
  • 资助金额:
    $ 7.14万
  • 项目类别:
Brillouin Microscope for Biomedical Research
用于生物医学研究的布里渊显微镜
  • 批准号:
    10239059
  • 财政年份:
    2018
  • 资助金额:
    $ 7.14万
  • 项目类别:
High-throughput vibrational cytometry
高通量振动细胞术
  • 批准号:
    7876089
  • 财政年份:
    2010
  • 资助金额:
    $ 7.14万
  • 项目类别:
High-throughput vibrational cytometry
高通量振动细胞术
  • 批准号:
    8467914
  • 财政年份:
    2010
  • 资助金额:
    $ 7.14万
  • 项目类别:
Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
  • 批准号:
    7454090
  • 财政年份:
    2008
  • 资助金额:
    $ 7.14万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF MEMBRANE POTENTIAL
膜电位的实时显微成像
  • 批准号:
    6364640
  • 财政年份:
    2001
  • 资助金额:
    $ 7.14万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF FAST MEMBRANE POTENTIA
快速膜电位的实时显微成像
  • 批准号:
    6530140
  • 财政年份:
    2001
  • 资助金额:
    $ 7.14万
  • 项目类别:
SHORT PULSE LASER TISSUE ABLATION
短脉冲激光组织消融
  • 批准号:
    6030105
  • 财政年份:
    2000
  • 资助金额:
    $ 7.14万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 7.14万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 7.14万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 7.14万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 7.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了