Statistical Methods for Brain Image Registration and Tensor-Based Morphometry

脑图像配准和基于张量的形态测量的统计方法

基本信息

  • 批准号:
    8240019
  • 负责人:
  • 金额:
    $ 20.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-15 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI and DTI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Here, we propose a method to improve both the nonlinear registration and statistical analyses for TBM. The traditional nonlinear registration for TBM is performed on T1-weighted MR images, either on the seg- mented 2D cortices alone, or on the whole 3D brain images, followed by corresponding statistical analyses on those domains. To date, neither option provides a satisfactory solution for the entire brain, since 2D cortical TBM ignores the rest of the brain, while 3D volumetric TBM has difficulty matching the cortex and may not match well neuronal fiber structures in the white matter. Here we describe a new statistical nonlinear registration algorithm for 3D volumetric TBM that combines the advantages of cortical matching to those of a 3D statistical fluid registration on the whole brain volume. In addition, we aim to match the underlying fiber structure accurately by adding a distance between diffusion tensors in the cost function derived from diffusion tensor imaging data. Furthermore, we propose to improve the detection power in the statistical analysis in TBM by using all the information available in the Jacobian of the deformation field in a multivariate fashion, and by setting up the inference so that it can be interpreted in terms of both volumetric changes and directions of deformation. PUBLIC HEALTH RELEVANCE: We improve on Tensor-Based Morphometry for group analysis in two ways, first by using cortical, structural MR and DTI information into a combined cortical and statistical fluid registration algorithm, and secondly by using multivariate statistical methods to analyze the full Jacobian matrix and the volumetric and directional information in it.
描述(由申请人提供):基于张量的形态测量(TBM)是一种日益流行的脑 MRI 和 DTI 数据分组分析方法。分析的主要步骤包括非线性配准,将每个单独的扫描对齐到公共空间,以及随后的统计分析,以确定形态差异或组间纤维结构的差异。在这里,我们提出了一种改进 TBM 非线性配准和统计分析的方法。 TBM 的传统非线性配准是在 T1 加权 MR 图像上进行的,可以单独在分段的 2D 皮质上进行,也可以在整个 3D 大脑图像上进行,然后对这些域进行相应的统计分析。迄今为止,这两种选择都无法为整个大脑提供令人满意的解决方案,因为 2D 皮质 TBM 忽略了大脑的其余部分,而 3D 体积 TBM 难以匹配皮质,并且可能无法很好地匹配白质中的神经元纤维结构。在这里,我们描述了一种用于 3D 体积 TBM 的新统计非线性配准算法,该算法结合了皮质匹配与全脑体积上 3D 统计流体配准的优点。此外,我们的目标是通过在从扩散张量成像数据导出的成本函数中添加扩散张量之间的距离来准确匹配底层纤维结构。 此外,我们建议通过以多元方式使用变形场雅可比行列式中的所有可用信息,并建立推理,以便可以根据体积变化和变形方向来解释它,从而提高 TBM 统计分析中的检测能力。 公共健康相关性:我们通过两种方式改进基于张量的形态测量法进行组分析,首先将皮质、结构 MR 和 DTI 信息用于组合的皮质和统计流体配准算法,其次使用多元统计方法分析完整的雅可比矩阵及其中的体积和方向信息。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mapping Genetic Influences on Brain Shape using Multi-Atlas Fluid Image Alignment.
使用多图集流体图像对齐绘制遗传对大脑形状的影响。
Cranial thickness changes in early childhood.
儿童早期的颅骨厚度发生变化。
Evaluating the Predictive Power of Multivariate Tensor-based Morphometry in Alzheimers Disease Progression via Convex Fused Sparse Group Lasso.
通过凸融合稀疏群套索评估基于多元张量的形态测量对阿尔茨海默病进展的预测能力。
Multivariate surface-based analysis of corpus callosum in patients with sickle cell disease.
镰状细胞病患者胼胝体的多变量表面分析。
Brain Differences Visualized in the Blind using Tensor Manifold Statistics and Diffusion Tensor Imaging.
使用张量流形统计和扩散张量成像在盲人中可视化大脑差异。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasha Lepore其他文献

Natasha Lepore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasha Lepore', 18)}}的其他基金

International Symposium on Biomedical Imaging (ISBI) 2023 Travel Awards for Research Trainees from Underrepresented Backgrounds
国际生物医学成像研讨会 (ISBI) 2023 年旅行奖颁发给来自代表性不足背景的研究实习生
  • 批准号:
    10683032
  • 财政年份:
    2023
  • 资助金额:
    $ 20.35万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10299359
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10456319
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10625390
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
Predicting the early childhood outcomes of preterm brain shape abnormalities
预测早产大脑形状异常的儿童早期结局
  • 批准号:
    9397322
  • 财政年份:
    2017
  • 资助金额:
    $ 20.35万
  • 项目类别:
Statistical Methods for Brain Image Registration and Tensor-Based Morphometry
脑图像配准和基于张量的形态测量的统计方法
  • 批准号:
    8115254
  • 财政年份:
    2011
  • 资助金额:
    $ 20.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了