Statistical Methods for Brain Image Registration and Tensor-Based Morphometry

脑图像配准和基于张量的形态测量的统计方法

基本信息

  • 批准号:
    8115254
  • 负责人:
  • 金额:
    $ 27.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-15 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI and DTI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Here, we propose a method to improve both the nonlinear registration and statistical analyses for TBM. The traditional nonlinear registration for TBM is performed on T1-weighted MR images, either on the seg- mented 2D cortices alone, or on the whole 3D brain images, followed by corresponding statistical analyses on those domains. To date, neither option provides a satisfactory solution for the entire brain, since 2D cortical TBM ignores the rest of the brain, while 3D volumetric TBM has difficulty matching the cortex and may not match well neuronal fiber structures in the white matter. Here we describe a new statistical nonlinear registration algorithm for 3D volumetric TBM that combines the advantages of cortical matching to those of a 3D statistical fluid registration on the whole brain volume. In addition, we aim to match the underlying fiber structure accurately by adding a distance between diffusion tensors in the cost function derived from diffusion tensor imaging data. Furthermore, we propose to improve the detection power in the statistical analysis in TBM by using all the information available in the Jacobian of the deformation field in a multivariate fashion, and by setting up the inference so that it can be interpreted in terms of both volumetric changes and directions of deformation. PUBLIC HEALTH RELEVANCE: We improve on Tensor-Based Morphometry for group analysis in two ways, first by using cortical, structural MR and DTI information into a combined cortical and statistical fluid registration algorithm, and secondly by using multivariate statistical methods to analyze the full Jacobian matrix and the volumetric and directional information in it.
描述(由申请人提供):基于张量的形态测量(TBM)是一种越来越流行的脑MRI和DTI数据组分析方法。分析的主要步骤包括非线性配准,使每个单独的扫描与公共空间对齐,以及随后的统计分析,以确定形态测量差异,或组间纤维结构的差异。本文提出了一种改进TBM非线性配准和统计分析的方法。传统的TBM非线性配准方法是在t1加权MR图像上进行配准,要么只对分割的二维皮质进行配准,要么对整个三维脑图像进行配准,然后对这些区域进行相应的统计分析。迄今为止,这两种方法都不能对整个大脑提供满意的解决方案,因为二维皮质TBM忽略了大脑的其余部分,而三维体积TBM难以匹配皮层,可能无法很好地匹配白质中的神经元纤维结构。在这里,我们描述了一种新的三维体积TBM统计非线性配准算法,该算法结合了皮质匹配和全脑体积三维统计流体配准的优点。此外,我们的目标是通过在扩散张量成像数据得出的代价函数中添加扩散张量之间的距离来准确匹配底层纤维结构。此外,我们提出利用变形场的雅可比矩阵以多元方式提供的所有信息,并通过建立推理,使其可以根据体积变化和变形方向进行解释,从而提高TBM统计分析中的检测能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasha Lepore其他文献

Natasha Lepore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasha Lepore', 18)}}的其他基金

International Symposium on Biomedical Imaging (ISBI) 2023 Travel Awards for Research Trainees from Underrepresented Backgrounds
国际生物医学成像研讨会 (ISBI) 2023 年旅行奖颁发给来自代表性不足背景的研究实习生
  • 批准号:
    10683032
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10299359
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10456319
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
Early joint cranial and brain development from fetal and pediatric imaging
胎儿和儿科成像的早期关节颅骨和大脑发育
  • 批准号:
    10625390
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
Predicting the early childhood outcomes of preterm brain shape abnormalities
预测早产大脑形状异常的儿童早期结局
  • 批准号:
    9397322
  • 财政年份:
    2017
  • 资助金额:
    $ 27.45万
  • 项目类别:
Statistical Methods for Brain Image Registration and Tensor-Based Morphometry
脑图像配准和基于张量的形态测量的统计方法
  • 批准号:
    8240019
  • 财政年份:
    2011
  • 资助金额:
    $ 27.45万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了