Breaking Nucleosomal Symmetry

打破核小体对称性

基本信息

项目摘要

DESCRIPTION (provided by applicant): Project Summary / Abstract We have developed methods to manipulate for the first time the natural symmetry of nucleosomes, in order to test the extent to which this symmetry is functionally important. These questions cannot be pursued in cells with natural histones. Therefore, we have designed altered histone H3s that have obligate heterodimeric interactions, and which preclude interaction with wild-type H3 molecules. We will now use these altered H3s to measure how nucleosomal asymmetry affects gene expression and histone modification patterns, as follows: Aim 1. Identify the mechanistic basis for epistatic interactions between histone tails. In our preliminary studies, we observed distinct classes of phenotypes upon mutation of modifiable residues: in one case, a single asymmetric H3 point mutation paired with a wild-type partner exhibited all the transcriptional defects of a double point mutant. In another case, genes were only misregulated in symmetric double mutants. We will extend these studies to a large set of histone mutations to understand the mechanistic basis for the epistasis observed between pairs of histone mutants. Aim 2. Determine whether histone crosstalk functions in cis or in trans. A great number of histone modifying enzymes preferentially act on nucleosomes carrying some second modification, a phenomenon often referred to as "cross-talk". We will use genetic and biochemical approaches to assess whether crosstalk occurs in cis, on the same tail, or in trans, on opposite tails: we will identify the quantitative difference in gene expression between cells with cis and trans double K->R mutations in the H3 tail, and perform mass spectrometric analysis of purified asymmetric nucleosomes to determine whether second site modifications are lost in cis, in trans, or are unaffected by monomeric histone mutations. Together, these studies will reveal previously unexplored biochemical dependency pathways that alter histone modification patterns, and distinguish gene expression regulatory events that are dependent on one versus two histone H3 N-termini. Notably, because of the extreme conservation of core histones among eukaryotes, this work will open the way to exploring related questions in metazoans. Because histone modifications are central to all aspects of gene expression from yeast to man, and play major roles in human diseases including cancer, these studies will reveal unappreciated regulatory mechanisms that govern human health and growth control.
描述(由申请人提供): 项目摘要/摘要我们已经开发出第一次操纵核小体自然对称性的方法,以测试这种对称性在功能上的重要程度。这些问题不能在具有天然组蛋白的细胞中进行。因此,我们设计了改变的组蛋白H3,其具有专性异二聚体相互作用,并且排除了与野生型H3分子的相互作用。我们现在将使用这些改变的H3来测量核小体不对称性如何影响基因表达和组蛋白修饰模式,如下:目的1。确定组蛋白尾部之间上位相互作用的机制基础。在我们的初步研究中,我们观察到不同类别的表型后,可修饰的残基突变:在一种情况下,一个单一的不对称H3点突变与野生型伴侣配对表现出所有的转录缺陷的双点突变。在另一种情况下,基因只在对称双突变体中被错误调节。我们将这些研究扩展到一个大的组蛋白突变,以了解组蛋白突变体之间观察到的上位性的机制基础。目标2.确定组蛋白串扰是以顺式还是反式方式起作用。大量的组蛋白修饰酶优先作用于携带某些第二修饰的核小体,这种现象通常被称为“串扰”。我们将使用遗传和生物化学方法来评估串扰是否发生在顺式,在相同的尾巴上,或在反式,在相反的尾巴上:我们将鉴定在H3尾具有顺式和反式双K->R突变的细胞之间基因表达的定量差异,并对纯化的不对称核小体进行质谱分析以确定第二位点修饰是否在顺式,反式,或者不受单体组蛋白突变的影响。总之,这些研究将揭示以前未探索的生化依赖途径,改变组蛋白修饰模式,并区分基因表达调控事件,依赖于一个与两个组蛋白H3 N-末端。值得注意的是,由于核心组蛋白在真核生物中的极端保守性,这项工作将为探索后生动物中的相关问题开辟道路。由于组蛋白修饰对从酵母到人类的基因表达的各个方面都至关重要,并且在包括癌症在内的人类疾病中发挥着重要作用,因此这些研究将揭示管理人类健康和生长控制的未被重视的调控机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL D. KAUFMAN其他文献

PAUL D. KAUFMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL D. KAUFMAN', 18)}}的其他基金

FASEB SRC: The Nuclear Bodies Conference: Hubs of Genomic Activity
FASEB SRC:核机构会议:基因组活动中心
  • 批准号:
    10467741
  • 财政年份:
    2022
  • 资助金额:
    $ 31.39万
  • 项目类别:
Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes
真核生物核功能:从核小体到染色体
  • 批准号:
    10152614
  • 财政年份:
    2018
  • 资助金额:
    $ 31.39万
  • 项目类别:
Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes
真核生物核功能:从核小体到染色体
  • 批准号:
    10400845
  • 财政年份:
    2018
  • 资助金额:
    $ 31.39万
  • 项目类别:
Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes
真核细胞核功能:从核小体到染色体
  • 批准号:
    9923723
  • 财政年份:
    2018
  • 资助金额:
    $ 31.39万
  • 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
  • 批准号:
    9326974
  • 财政年份:
    2015
  • 资助金额:
    $ 31.39万
  • 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
  • 批准号:
    9764307
  • 财政年份:
    2015
  • 资助金额:
    $ 31.39万
  • 项目类别:
Breaking Nucleosomal Symmetry
打破核小体对称性
  • 批准号:
    9104163
  • 财政年份:
    2014
  • 资助金额:
    $ 31.39万
  • 项目类别:
Breaking Nucleosomal Symmetry
打破核小体对称性
  • 批准号:
    8892203
  • 财政年份:
    2014
  • 资助金额:
    $ 31.39万
  • 项目类别:
IDENTIFICATION OF PROTEINS THAT REGULATE THE SIN3A HISTONE DEACETYLASE COMPLEX
调节 SIN3A 组蛋白脱乙酰酶复合物的蛋白质的鉴定
  • 批准号:
    8171342
  • 财政年份:
    2010
  • 资助金额:
    $ 31.39万
  • 项目类别:
IDENTIFICATION OF PROTEINS THAT REGULATE THE SIN3A HISTONE DEACETYLASE COMPLEX
调节 SIN3A 组蛋白脱乙酰酶复合物的蛋白质的鉴定
  • 批准号:
    7957764
  • 财政年份:
    2009
  • 资助金额:
    $ 31.39万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 31.39万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 31.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了