Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes

真核生物核功能:从核小体到染色体

基本信息

项目摘要

Project Summary/Abstract Eukaryotic genomes must simultaneously be packaged to fit into the cell nucleus, but also provide access at specific loci to allow for fundamental biological processes including gene transcription and genome replication. To accomplish these opposing requirements for packaging and access, eukaryotic genomes are regulated at many levels and length scales, from the nucleosome to the higher-order, three-dimensional interactions among chromosomes. My laboratory is investigating two different levels of regulation along this broad but interconnected spectrum: First, we are testing for the first time the extent of regulation of genome function at the level of nucleosome symmetry. Nucleosomes contain two copies of each core histone, held together by a naturally symmetric, homodimeric histone H3-H3 interface. This symmetry has complicated efforts to determine the regulatory potential of this architecture. In other words, is it important whether one or both tails receives a post- translational modification? Answering this question requires the ability to specifically impair modification on a single tail per nucleosome. Through molecular design and in vivo selection, we have generated obligately heterodimeric H3s, providing a unique tool for discovery of the degree to which histone modification symmetry plays a regulatory role in gene expression and other chromosomal functions in living cells. Having validated an asymmetric H3 pair, we are extending these studies to two additional H3 isoforms. First, we recently generated an asymmetric centromeric H3 (Cse4/CENP-A) pair in budding yeast. Using these, we will address long-standing controversies regarding centromeric nucleosome stoichiometry. Second, we are using an asymmetric replication-independent histone H3.3 pair to probe two histone modifications with key roles in chromatin structure and gene regulation. Histone H3.3 is required for repression of endogenous retrovirus transcription and early differentiation in mouse embryonic stem cells, so we plan to investigate the stoichiometry of regulatory relationships for repressive chromatin mechanisms that are absent in yeast, most notably involving H3K9me3 (characteristic of constitutive heterochromatin) and H3K27me3 (characteristic of facultative heterochromatin that is developmentally regulated). Because dominant H3.3 mutations are implicated in several types of cancer, these studies also provide a novel tool for exploration of how these alterations affect epigenomes in living cells. Second, we are exploring interconnections between the three-dimensional organization of the human genome, cell cycle progression, and protection from genotoxic stress. Our experiments have led us to focus on the clinically important proliferation marker protein Ki-67. Ki-67 is required for normal three- dimensional organization of heterochromatic loci around the nucleoli, protects cells from genotoxic stress, and is essential for forming a proteinaceous layer on mitotic chromosomes. It is not understood how Ki-67 contributes to these processes, or how these functions may be interrelated. We recently discovered that in human cells with intact G1/S cell cycle checkpoints, acute depletion of Ki-67 induces cell cycle inhibitor p21, reduces G1/S-regulated RNA levels, and delays S phase entry. These cell cycle phenotypes are accompanied by reduced maintenance of heterochromatin marks (e.g. H3K27me3) on the inactive X (Xi) chromosome in female checkpoint-proficient cells. Notably, all of these phenotypes are absent in cells lacking G1/S checkpoints. In other words, Ki-67 links cell cycle progression and chromosome maintenance in primary cells, and checkpoint-defective tumor cells evade these mechanisms. To begin molecular exploration of these novel functions, we will therefore test for molecular hallmarks of DNA damage upon Ki-67 depletion in checkpoint-proficient cells. We will also map which Ki-67 protein domains are required for its novel activities, and determine if they are separable from previously described roles in mitotic chromosome structure and interphase heterochromatin localization. In this manner, we will be poised to pursue relevant partner proteins on our path to new insights into the coordination of human chromosome structure and function.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL D. KAUFMAN其他文献

PAUL D. KAUFMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL D. KAUFMAN', 18)}}的其他基金

FASEB SRC: The Nuclear Bodies Conference: Hubs of Genomic Activity
FASEB SRC:核机构会议:基因组活动中心
  • 批准号:
    10467741
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes
真核生物核功能:从核小体到染色体
  • 批准号:
    10400845
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
Eukaryotic Nuclear Functions: from Nucleosomes to Chromosomes
真核细胞核功能:从核小体到染色体
  • 批准号:
    9923723
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
  • 批准号:
    9326974
  • 财政年份:
    2015
  • 资助金额:
    $ 33.5万
  • 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
  • 批准号:
    9764307
  • 财政年份:
    2015
  • 资助金额:
    $ 33.5万
  • 项目类别:
Breaking Nucleosomal Symmetry
打破核小体对称性
  • 批准号:
    8695935
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
Breaking Nucleosomal Symmetry
打破核小体对称性
  • 批准号:
    9104163
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
Breaking Nucleosomal Symmetry
打破核小体对称性
  • 批准号:
    8892203
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
IDENTIFICATION OF PROTEINS THAT REGULATE THE SIN3A HISTONE DEACETYLASE COMPLEX
调节 SIN3A 组蛋白脱乙酰酶复合物的蛋白质的鉴定
  • 批准号:
    8171342
  • 财政年份:
    2010
  • 资助金额:
    $ 33.5万
  • 项目类别:
IDENTIFICATION OF PROTEINS THAT REGULATE THE SIN3A HISTONE DEACETYLASE COMPLEX
调节 SIN3A 组蛋白脱乙酰酶复合物的蛋白质的鉴定
  • 批准号:
    7957764
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了