Bacterial Export of Folded Proteins: Transport Mechanism of the Tat Translocon
折叠蛋白的细菌输出:Tat 易位子的转运机制
基本信息
- 批准号:9248086
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAntibioticsArginineBacteriaBindingBinding SitesBiochemicalBiological ProcessC-terminalCaliberCell DeathCell WallCell divisionCell membraneCellsCessation of lifeCharacteristicsComplexDefectDestinationsDevelopmentDiseaseEscherichia coliExtravasationFluorescenceGoalsGrowthHealthHomologous GeneHumanInfectionInvestigationIonsKineticsLaboratoriesLinkLocationMembraneMembrane LipidsMetabolicModelingMolecularMovementN-terminalNatureNuclear Pore ComplexOrganismOutcomePathogenicityPeptide Signal SequencesPermeabilityPharmacologic SubstancePlantsProcessPropertyProtein Export PathwayProtein translocationProteinsProton-Motive ForceReactionResearchRibosomesRoleStagingSystemTestingThylakoid MembranesTimeTwin Multiple BirthVirulenceVirulence FactorsWorkaqueouscell motilitycombatcrosslinkdesignenvironmental changeexperienceimprovedin vitro Assayinhibitor/antagonistinsightmacromoleculenovelpolypeptidepreventprotein foldingprotein transportpublic health relevancereceptorsingle moleculesoundtool
项目摘要
DESCRIPTION (provided by applicant): Since proteins are found in every membrane and aqueous compartment within cells and yet are primarily synthesized on cytoplasmic ribosomes, protein targeting and transport across or into lipid membranes is a fundamental process in all organisms. Many distinct types of translocation systems exist that allow large protein molecules to cross membranes without compromising the membranes' role as a permeability barrier to ions, metabolites, and macromolecules. While many protein transport systems translocate 'linearized polypeptides', the twin-arginine translocation (Tat) system transports fully-folded and
assembled proteins without collapsing ion gradients. The absence of a functional Tat system in bacteria often leads to growth defects and occasionally death. The Tat machinery is also responsible for the export of proteins important for bacterial virulence in humans. Since animals, including humans, do not contain homologues of Tat machinery proteins, inhibitors of Tat transport could potentially find use as novel antibiotics. Our long-term goal is to decipher the mechanism of protein transport by the bacterial Tat machinery at a molecular level. In past research, numerous in vitro assays that enable biochemical and biophysical investigations of the Escherichia coli Tat transport mechanism have been developed. Recent work indicates that the Tat machinery catalyzes insertion of a signal peptide hairpin into the membrane in an energy-independent manner, and that full translocation of the C-terminal end of the signal peptide requires a proton motive force. These results establish that the signal peptide's binding interactions and its membrane translocation are critical for directly promoting mature domain transport. However, the structural and oligomeric nature of the translocation pore and how leakage is prevented remain major unsolved problems. Characterization of the translocation pore is particularly challenging because it disassembles in the absence of a proton motive force. We will examine structural and dynamic properties of the Tat machinery, and test hypotheses generated by our Hairpin-Hinge Model of transport. Our Specific Aims are: (1) to identify the signal peptide binding site on the TatBC receptor complex, and determine the arrangement of TatBC heterodimers in the TatBC oligomer; (2) to characterize translocon and cargo dynamics during Tat transport using real-time kinetic approaches; and (3) to identify the conformational and environmental changes that TatA experiences during transport. We will use crosslinking and real-time fluorescence approaches, including single molecule studies, to probe binding interactions and the dynamic transitions between important structural intermediates in the translocation cycle. This work will clearly establish the manner in which signal peptides interact with the Tat machinery, and the structural, dynamic, and oligomeric properties of the translocation pore. In total, this study will significantly advance our understanding of the Tat transport mechanism, which will in turn provide a sound framework for understanding bacterial growth and virulence, and for the development of antibiotics and biotechnological tools.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIEGFRIED M MUSSER其他文献
SIEGFRIED M MUSSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIEGFRIED M MUSSER', 18)}}的其他基金
Time-Resolved Confocal Fluorescence Microscope with Single Molecule Sensitivity
具有单分子灵敏度的时间分辨共焦荧光显微镜
- 批准号:
10415601 - 财政年份:2022
- 资助金额:
$ 8.4万 - 项目类别:
Mapping Transport Pathways through Nuclear Pores using 3D Super-Resolution Microscopy
使用 3D 超分辨率显微镜绘制通过核孔的传输路径
- 批准号:
10521623 - 财政年份:2018
- 资助金额:
$ 8.4万 - 项目类别:
Mapping Transport Pathways through Nuclear Pores using 3D Super-Resolution Microscopy
使用 3D 超分辨率显微镜绘制通过核孔的传输路径
- 批准号:
10798722 - 财政年份:2018
- 资助金额:
$ 8.4万 - 项目类别:
Mapping Transport Pathways through Nuclear Pores using 3D Super-Resolution Microscopy
使用 3D 超分辨率显微镜绘制通过核孔的传输路径
- 批准号:
10707468 - 财政年份:2018
- 资助金额:
$ 8.4万 - 项目类别:
High Throughput Screening for Tat Transport Inhibitors
Tat 转运抑制剂的高通量筛选
- 批准号:
8134498 - 财政年份:2008
- 资助金额:
$ 8.4万 - 项目类别:
High Throughput Screening for Tat Transport Inhibitors
Tat 转运抑制剂的高通量筛选
- 批准号:
7617460 - 财政年份:2008
- 资助金额:
$ 8.4万 - 项目类别:
Single Molecule Analysis of Bacterial Protein Transport
细菌蛋白质运输的单分子分析
- 批准号:
6743969 - 财政年份:2003
- 资助金额:
$ 8.4万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Studentship














{{item.name}}会员




