Automated electrophysiological analysis of neural circuitry using a novel nano-electrode array for intracellular recording of membrane potential

使用新型纳米电极阵列对细胞内膜电位进行自动电生理分析

基本信息

  • 批准号:
    9346140
  • 负责人:
  • 金额:
    $ 33.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Summary Nervous systems process information by integrating the electrical activity of neurons in complex networks. The alterations in the “flow” of electrical activity through neuronal networks of the brain play a causal role in the pathogenesis and/or the appearance of symptoms of neurodegenerative and psychiatric diseases. A fundamental goal of BRAIN Initiative is therefore to elucidate how the brain's neural circuits are structurally and functionally connected, a prerequisite for hypotheses- guided developments of more effective pharmacological treatments of these diseases. Unfortunately this goal remains elusive at present, largely due to the lack of technology to perform scalable recording and manipulation of neural activity with high S/N ratio, at single-cell level, over long period of time and under physiological conditions. The classic method of electrophysiology requires physical contact and electrical coupling between the recording electrodes and the cells under investigation, which presents different challenges regarding the two primary forms of technologies currently available. Intracellular recording methods by sharp electrode or patch clamping constrains the measurement to one cell at a time, and limits the recording time to several minutes due to the invasive nature of this approach. Extracellular recording with parallel, planar electrode array lacks single cell resolution, and fails to detect subthreshold synaptic potentials. The absence of adequate environmental control for both methods further reduces the physiological relevance of the results. The novel electrophysiology platform proposed in this STTR application aims to provide a powerful solution that bridges the long-standing gap between high-quality, non-scalable intracellular electrophysiology and low-quality, scalable extracellular electrophysiology; so to enable for the first time simultaneous, noninvasive measurement of intracellular membrane potential from many neurons under optimal physiological conditions. Central to this platform is the seamless integration of two innovative approaches: 1) parallel, nano-fabricated biocompatible electrodes, and 2) sensitive, environmentally robust electronics. We also plan to validate the complete system for analyzing neural network, using in vitro culture of cortical neurons. In summary, the ability to monitor the activities of larger neuronal networks simultaneously and non-invasively is a necessary prerequisite to understanding how neuronal networks function at the systems level. Our breakthrough technology is well positioned to provide a significantly improved cellular electrophysiology system for large-scale recording and manipulation of neural activity, with an immediate and positive impact on BRAIN Initiative’s central objective to understand the dynamic activity of neural circuits. This system, with further development, can support recording from even larger number of neurons, of different types, and for other applications such as neurotoxicity evaluation for drug development.
总结 神经系统通过整合复杂的神经元电活动来处理信息 网络.通过大脑神经元网络的电活动“流”的改变 在神经退行性疾病的发病机制和/或症状的出现中发挥因果作用 和精神疾病。因此,BRAIN倡议的一个基本目标是阐明 大脑的神经回路在结构上和功能上是相互连接的,这是假设的先决条件- 指导这些疾病更有效的药物治疗的发展。 不幸的是,这一目标目前仍然遥不可及,主要是由于缺乏技术来执行 在单细胞水平上以高信噪比可扩展地记录和操纵神经活动, 长时间和生理条件下。电生理学的经典方法 需要记录电极和细胞之间的物理接触和电耦合 这对两种主要形式的犯罪提出了不同的挑战, 目前可用的技术。细胞内尖电极或贴片记录法 箝位限制每次测量一个细胞,并将记录时间限制为几个细胞。 由于这种方法的侵入性,平行平面细胞外记录 电极阵列缺乏单细胞分辨率,不能检测阈下突触电位。 这两种方法缺乏适当的环境控制, 结果的生理相关性。 本STTR应用中提出的新型电生理平台旨在提供 强大的解决方案,弥合了高质量、不可扩展 细胞内电生理学和低质量、可扩展的细胞外电生理学;因此, 首次实现细胞内膜的同时、非侵入性测量 在最佳的生理条件下,许多神经元的潜力。该平台的核心是 两种创新方法的无缝集成:1)平行的纳米制造的生物相容性 电极,和2)敏感的、环境稳健的电子器件。我们还计划验证 一个完整的系统,用于分析神经网络,使用体外培养的皮层神经元。 总之,能够同时监测更大的神经网络的活动, 非侵入性是了解神经网络如何运作的必要前提, 系统层面。我们的突破性技术能够为客户提供 用于大规模记录和操纵神经元的改进的细胞电生理学系统 活动,对BRAIN倡议的中心目标产生直接和积极的影响, 了解神经回路的动态活动。该系统经过进一步开发, 支持记录甚至更大数量的神经元,不同类型的,以及其他 例如用于药物开发的神经毒性评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIN JIANG其他文献

XIN JIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIN JIANG', 18)}}的其他基金

An in vitro electrophysiology system for high-throughput measurement of cardiomyocyte action potential
用于高通量测量心肌细胞动作电位的体外电生理系统
  • 批准号:
    10759677
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
A functional array for signature of breast cancer
乳腺癌特征的功能阵列
  • 批准号:
    6880416
  • 财政年份:
    2005
  • 资助金额:
    $ 33.56万
  • 项目类别:
Transcription indication reporter array technology
转录指示报告基因阵列技术
  • 批准号:
    6739251
  • 财政年份:
    2004
  • 资助金额:
    $ 33.56万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了