Automated electrophysiological analysis of neural circuitry using a novel nano-electrode array for intracellular recording of membrane potential

使用新型纳米电极阵列对细胞内膜电位进行自动电生理分析

基本信息

  • 批准号:
    9346140
  • 负责人:
  • 金额:
    $ 33.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Summary Nervous systems process information by integrating the electrical activity of neurons in complex networks. The alterations in the “flow” of electrical activity through neuronal networks of the brain play a causal role in the pathogenesis and/or the appearance of symptoms of neurodegenerative and psychiatric diseases. A fundamental goal of BRAIN Initiative is therefore to elucidate how the brain's neural circuits are structurally and functionally connected, a prerequisite for hypotheses- guided developments of more effective pharmacological treatments of these diseases. Unfortunately this goal remains elusive at present, largely due to the lack of technology to perform scalable recording and manipulation of neural activity with high S/N ratio, at single-cell level, over long period of time and under physiological conditions. The classic method of electrophysiology requires physical contact and electrical coupling between the recording electrodes and the cells under investigation, which presents different challenges regarding the two primary forms of technologies currently available. Intracellular recording methods by sharp electrode or patch clamping constrains the measurement to one cell at a time, and limits the recording time to several minutes due to the invasive nature of this approach. Extracellular recording with parallel, planar electrode array lacks single cell resolution, and fails to detect subthreshold synaptic potentials. The absence of adequate environmental control for both methods further reduces the physiological relevance of the results. The novel electrophysiology platform proposed in this STTR application aims to provide a powerful solution that bridges the long-standing gap between high-quality, non-scalable intracellular electrophysiology and low-quality, scalable extracellular electrophysiology; so to enable for the first time simultaneous, noninvasive measurement of intracellular membrane potential from many neurons under optimal physiological conditions. Central to this platform is the seamless integration of two innovative approaches: 1) parallel, nano-fabricated biocompatible electrodes, and 2) sensitive, environmentally robust electronics. We also plan to validate the complete system for analyzing neural network, using in vitro culture of cortical neurons. In summary, the ability to monitor the activities of larger neuronal networks simultaneously and non-invasively is a necessary prerequisite to understanding how neuronal networks function at the systems level. Our breakthrough technology is well positioned to provide a significantly improved cellular electrophysiology system for large-scale recording and manipulation of neural activity, with an immediate and positive impact on BRAIN Initiative’s central objective to understand the dynamic activity of neural circuits. This system, with further development, can support recording from even larger number of neurons, of different types, and for other applications such as neurotoxicity evaluation for drug development.
概括 神经系统通过整合复杂神经元的电活动来处理信息 网络。通过大脑神经元网络的电活动“流动”的变化 在神经退行性疾病的发病机制和/或症状的出现中发挥因果作用 和精神疾病。因此,BRAIN Initiative 的一个基本目标是阐明如何 大脑的神经回路在结构和功能上是相互联系的,这是假设的先决条件- 指导开发这些疾病的更有效的药物治疗方法。 不幸的是,这个目标目前仍然难以实现,很大程度上是由于缺乏执行技术 在单细胞水平上以高信噪比可扩展记录和操纵神经活动 长时间且在生理条件下。电生理学的经典方法 需要记录电极和细胞之间的物理接触和电耦合 正在调查中,这对两种主要形式提出了不同的挑战 目前可用的技术。通过锋利电极或贴片进行细胞内记录方法 钳位将一次测量限制为一个细胞,并将记录时间限制为几个 由于这种方法的侵入性,需要几分钟的时间。平行、平面的细胞外记录 电极阵列缺乏单细胞分辨率,无法检测阈下突触电位。 这两种方法缺乏足够的环境控制,进一步降低了 结果的生理相关性。 STTR 应用中提出的新型电生理学平台旨在提供 强大的解决方案,弥补了高质量、不可扩展之间长期存在的差距 细胞内电生理学和低质量、可扩展的细胞外电生理学;所以 首次实现细胞内膜的同步、无创测量 在最佳生理条件下,许多神经元的潜力。这个平台的核心是 两种创新方法的无缝集成:1)并行、纳米制造的生物相容性 电极,以及 2) 敏感、环保的电子设备。我们还计划验证 使用皮层神经元的体外培养来分析神经网络的完整系统。 总之,同时监测更大的神经元网络的活动和 非侵入性是理解神经网络如何发挥作用的必要先决条件 系统级别。我们的突破性技术能够提供显着的 改进的细胞电生理学系统,用于大规模记录和操纵神经 活动,对 BRAIN Initiative 的中心目标产生直接和积极的影响 了解神经回路的动态活动。该系统经过进一步开发,可以 支持记录更多不同类型的神经元以及其他 应用,例如药物开发的神经毒性评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIN JIANG其他文献

XIN JIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIN JIANG', 18)}}的其他基金

An in vitro electrophysiology system for high-throughput measurement of cardiomyocyte action potential
用于高通量测量心肌细胞动作电位的体外电生理系统
  • 批准号:
    10759677
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
A functional array for signature of breast cancer
乳腺癌特征的功能阵列
  • 批准号:
    6880416
  • 财政年份:
    2005
  • 资助金额:
    $ 33.56万
  • 项目类别:
Transcription indication reporter array technology
转录指示报告基因阵列技术
  • 批准号:
    6739251
  • 财政年份:
    2004
  • 资助金额:
    $ 33.56万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 33.56万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 33.56万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
Deciphering alpha-cell heterogeneity using a novel reporter mouse
使用新型报告小鼠解读α细胞异质性
  • 批准号:
    20K08895
  • 财政年份:
    2020
  • 资助金额:
    $ 33.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了