Automated electrophysiological analysis of neural circuitry using a novel nano-electrode array for intracellular recording of membrane potential
使用新型纳米电极阵列对细胞内膜电位进行自动电生理分析
基本信息
- 批准号:9346140
- 负责人:
- 金额:$ 33.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAlpha CellAmplifiersAppearanceBRAIN initiativeBiological Neural NetworksBrainCell Culture TechniquesCellsComplexControlled EnvironmentCouplingDataDevelopmentDiseaseDrug EvaluationElectrodesElectronicsElectrophysiology (science)ElectroporationEnvironmentFeedbackGoalsIn VitroIncubatorsIndividualIndustrializationInterneuronsIntracellular MembranesInvestigationLabelLaboratoriesMapsMeasurementMembrane PotentialsMental disordersMethodsMicroelectrodesMonitorNanotechnologyNatureNervous system structureNeurodegenerative DisordersNeuronsPathogenesisPathway AnalysisPharmacological TreatmentPhasePhysiologicalPlayPositioning AttributeProcessPropertyResearchResearch PersonnelResolutionRoleSignal TransductionSmall Business Technology Transfer ResearchSymptomsSynaptic PotentialsSystemSystems AnalysisTechnologyTimeUniversitiesbasebiomaterial compatibilitydesigndrug developmentextracellularflexibilityhigh throughput analysisimprovedinnovationmillimeternanonanofabricationneural circuitneuronal circuitryneurotoxicitynovelpatch clampprogramspublic health relevancerelating to nervous systemresearch and developmentscreeningsuccess
项目摘要
Summary
Nervous systems process information by integrating the electrical activity of neurons in complex
networks. The alterations in the “flow” of electrical activity through neuronal networks of the brain
play a causal role in the pathogenesis and/or the appearance of symptoms of neurodegenerative
and psychiatric diseases. A fundamental goal of BRAIN Initiative is therefore to elucidate how the
brain's neural circuits are structurally and functionally connected, a prerequisite for hypotheses-
guided developments of more effective pharmacological treatments of these diseases.
Unfortunately this goal remains elusive at present, largely due to the lack of technology to perform
scalable recording and manipulation of neural activity with high S/N ratio, at single-cell level, over
long period of time and under physiological conditions. The classic method of electrophysiology
requires physical contact and electrical coupling between the recording electrodes and the cells
under investigation, which presents different challenges regarding the two primary forms of
technologies currently available. Intracellular recording methods by sharp electrode or patch
clamping constrains the measurement to one cell at a time, and limits the recording time to several
minutes due to the invasive nature of this approach. Extracellular recording with parallel, planar
electrode array lacks single cell resolution, and fails to detect subthreshold synaptic potentials.
The absence of adequate environmental control for both methods further reduces the
physiological relevance of the results.
The novel electrophysiology platform proposed in this STTR application aims to provide a
powerful solution that bridges the long-standing gap between high-quality, non-scalable
intracellular electrophysiology and low-quality, scalable extracellular electrophysiology; so to
enable for the first time simultaneous, noninvasive measurement of intracellular membrane
potential from many neurons under optimal physiological conditions. Central to this platform is
the seamless integration of two innovative approaches: 1) parallel, nano-fabricated biocompatible
electrodes, and 2) sensitive, environmentally robust electronics. We also plan to validate the
complete system for analyzing neural network, using in vitro culture of cortical neurons.
In summary, the ability to monitor the activities of larger neuronal networks simultaneously and
non-invasively is a necessary prerequisite to understanding how neuronal networks function at
the systems level. Our breakthrough technology is well positioned to provide a significantly
improved cellular electrophysiology system for large-scale recording and manipulation of neural
activity, with an immediate and positive impact on BRAIN Initiative’s central objective to
understand the dynamic activity of neural circuits. This system, with further development, can
support recording from even larger number of neurons, of different types, and for other
applications such as neurotoxicity evaluation for drug development.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIN JIANG其他文献
XIN JIANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIN JIANG', 18)}}的其他基金
An in vitro electrophysiology system for high-throughput measurement of cardiomyocyte action potential
用于高通量测量心肌细胞动作电位的体外电生理系统
- 批准号:
10759677 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Transcription indication reporter array technology
转录指示报告基因阵列技术
- 批准号:
6739251 - 财政年份:2004
- 资助金额:
$ 33.56万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 33.56万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 33.56万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 33.56万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 33.56万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 33.56万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:














{{item.name}}会员




