Defining the non-apoptotic role of Caspase-8 activity in anti-bacterial immune defense
定义 Caspase-8 活性在抗菌免疫防御中的非凋亡作用
基本信息
- 批准号:9229681
- 负责人:
- 金额:$ 40.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha CellAnti-Bacterial AgentsAntibiotic ResistanceApoptosisApoptoticAspartateBacterial InfectionsBiological AssayCASP8 geneCaspaseCell DeathCell SurvivalCellsCleaved cellCommunicable DiseasesCytokine GeneDefectDetectionDevelopmentDimerizationDisease NotificationEctopic ExpressionEnzymesExhibitsFailureGene ExpressionGenerationsGenesGenetic TranscriptionGoalsGram-Negative Bacterial InfectionsHDAC7 histone deacetylaseHeterodimerizationHistone DeacetylaseHomoHomodimerizationHost DefenseHumanImmuneImmune signalingImmunityIndividualInfectionInfection ControlInflammationInflammation MediatorsInflammatoryKnock-in MouseKnowledgeLaboratoriesMediatingMethodsMolecularMorbidity - disease rateMusMutant Strains MiceOutcomePathogenicityPathologicPattern recognition receptorPlayProductionPublishingReceptor SignalingRecruitment ActivityRegulationResistance to infectionRoleSepsisSeptic ShockSignal PathwaySignal TransductionTestingTherapeuticToll-like receptorsTranscription Repressor/CorepressorUnited StatesUp-RegulationYersiniaYersinia infectionsadaptive immunityantimicrobialbacterial geneticscytokinedefined contributiondimerfoodbornefoodborne illnessimmunopathologyimmunoregulationin vivoinsightknock-downmacrophagemonomermortalitymouse modelmutantnew therapeutic targetnovelnovel strategiespathogenpreventpromoterpublic health relevanceresponsetooltranscription factor
项目摘要
Project Summary
Bacterial infection is sensed by evolutionarily conserved pattern recognition receptors, including Toll Like
Receptors (TLRs). TLR signaling induces production of inflammatory mediators that play a key role in
controlling infection as well as in the pathologic sequellae of infection, including gram-negative sepsis. Recent
studies in our laboratory and others revealed a role for the cysteine protease, caspase-8 (Casp8) as an
important regulator of the transcriptional response to bacterial infection. Casp8-deficient mice and humans are
highly susceptible to mucosal bacterial infection, implicating Casp8 as a key regulator of anti-bacterial immune
defense. Intriguingly, our preliminary studies demonstrate that Casp8 plays a cell-intrinsic role in regulating
transcription of key anti-microbial inflammatory mediators in response to gram-negative bacterial infection and
TLR stimulation, and this is entirely independent of the well-established role of Casp8 in regulating cell death.
Autoprocessing of Casp8 at a key aspartate residue leads to stabilization of the enzymatically active Casp8
homodimer, and subsequent cleavage of its apoptotic substrates. Conversely, Casp8 functions as a
heterodimer with cFLIP to limit cell death and promote cell survival. We have now generated a novel Casp8DA
mutant mouse in which the ability of Casp8 to homodimerize is eliminated, and have found that Casp8DA
macrophages have a significant defect in their ability to induce inflammatory cytokine production in response to
TLR engagement. These studies provoke the conceptually novel hypothesis that the Casp8 homodimer plays a
non-apoptotic role in the induction of antimicrobial responses during bacterial infection or TLR engagement.
We propose two Specific Aims to address this important gap in our knowledge. First we will utilize newly-
generated mutant mice that distinguish between the function of the caspase-8 homo- and hetero-dimers to
define the define molecular mechanism of caspase-8-mediated control of inflammatory cytokine gene
expression. In particular we will test whether caspase-8 regulates inflammatory gene expression by cleaving
and inactivating transcriptional repressors or activating a transcriptional inducer. Second, we will use well-
defined murine models of systemic bacterial infection to interrogate the in vivo role of caspase-8-dependent
inflammatory cytokine production in innate and adaptive antimicrobial immune defense.
项目摘要
细菌感染由进化上保守的模式识别受体感知,包括Toll样受体。
受体(TLR)。TLR信号传导诱导炎症介质的产生,其在炎症反应中起关键作用。
控制感染以及感染的病理后果,包括革兰氏阴性脓毒症。最近
我们实验室和其他实验室的研究揭示了半胱氨酸蛋白酶caspase-8(Casp 8)作为一种蛋白酶的作用。
细菌感染转录反应的重要调节因子。Casp 8缺陷小鼠和人类
对粘膜细菌感染高度敏感,暗示Casp 8是抗菌免疫的关键调节剂
防御有趣的是,我们的初步研究表明,Casp 8在调节细胞凋亡中起着细胞内在的作用。
应答革兰氏阴性细菌感染的关键抗微生物炎症介质的转录,
TLR刺激,并且这完全独立于Casp 8在调节细胞死亡中的公认作用。
Casp 8在关键天冬氨酸残基处的自动加工导致酶活性Casp 8的稳定化
同源二聚体,随后裂解其凋亡底物。相反,Casp 8作为一种
异源二聚体与cFLIP结合以限制细胞死亡并促进细胞存活。我们现在已经产生了一种新的Casp 8DA
突变小鼠,其中Casp 8同源二聚化的能力被消除,并且已经发现Casp 8DA
巨噬细胞在诱导炎症细胞因子产生的能力上有显著缺陷,
TLR接合。这些研究提出了一个概念上新颖的假设,即Casp 8同源二聚体在细胞内起着重要作用。
在细菌感染或TLR接合期间诱导抗微生物应答中的非凋亡作用。
我们提出了两个具体目标,以解决我们知识中的这一重要差距。首先,我们将利用新的-
产生的突变小鼠,区分caspase-8同源和异源二聚体的功能,
明确caspase-8介导的炎症细胞因子基因调控的分子机制
表情特别是,我们将测试caspase-8是否通过切割
和失活转录阻遏物或激活转录诱导物。二是要用好--
确定的全身性细菌感染的小鼠模型,以询问caspase-8依赖的
先天性和适应性抗微生物免疫防御中的炎性细胞因子产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IGOR E BRODSKY其他文献
IGOR E BRODSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IGOR E BRODSKY', 18)}}的其他基金
Defining mechanisms of Casp1/11-independent death triggered by clinical Salmonella Enteritidis
临床肠炎沙门氏菌触发的 Casp1/11 独立死亡的定义机制
- 批准号:
10452195 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Defining mechanisms of Casp1/11-independent death triggered by clinical Salmonella Enteritidis
临床肠炎沙门氏菌触发的 Casp1/11 独立死亡的定义机制
- 批准号:
10580079 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Defining the mechanism and functions of RIPK1-induced cell death in anti-bacterial immune defense
明确RIPK1诱导细胞死亡在抗菌免疫防御中的机制和功能
- 批准号:
10329911 - 财政年份:2019
- 资助金额:
$ 40.74万 - 项目类别:
Defining the mechanism and functions of RIPK1-induced cell death in anti-bacterial immune defense
明确RIPK1诱导细胞死亡在抗菌免疫防御中的机制和功能
- 批准号:
10092916 - 财政年份:2019
- 资助金额:
$ 40.74万 - 项目类别:
Defining the mechanism and functions of RIPK1-induced cell death in anti-bacterial immune defense
明确RIPK1诱导细胞死亡在抗菌免疫防御中的机制和功能
- 批准号:
10557104 - 财政年份:2019
- 资助金额:
$ 40.74万 - 项目类别:
Dissecting the mechanism of RIPK1 kinase-dependent cell death in control of Yersinia infection
剖析 RIPK1 激酶依赖性细胞死亡控制耶尔森菌感染的机制
- 批准号:
9285729 - 财政年份:2016
- 资助金额:
$ 40.74万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Deciphering alpha-cell heterogeneity using a novel reporter mouse
使用新型报告小鼠解读α细胞异质性
- 批准号:
20K08895 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




