Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale

纳米级囊泡的纳米孔力光谱和分选

基本信息

  • 批准号:
    9292313
  • 负责人:
  • 金额:
    $ 7.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Nanoscale vesicles form the structural framework of organelles such as lysosomes, endosomes, exosomes, endocytic and exocytic vesicles, as well as the lipid envelope for viruses. These physiological or pathological nanocarriers are nature’s delivery systems for molecules and therefore represent prototypes for developing novel drug/gene delivery systems for pharmaceutical applications. An important aspect of vesicles is that their mechanical properties allow them to achieve seemingly diametrical tasks: 1- to deform and merge with target membranes to deliver their cargos, and 2- to maintain physical integrity without rupturing in dynamic biological environments. Pure synthetic vesicles (i.e. liposomes), for example, do not possess sufficient mechanical integrity to effectively withstand harsh perturbations present in biological environments (e.g. large fluctuations in static pressure), but reinforcement by more complex structural features, such as membrane proteins and protein-lipid complexes, can provide structural integrity, while maintaining the ability to deform and to fuse with target membranes. Hence, studying the mechanical properties of vesicles, and understanding the mechanisms of reinforcement, as well as the effect of soluble effectors on vesicles’ mechanics at the nanoscale, is of great significance for both fundamental and applied purposes. Not only can it help us understand the fundamental biological transport phenomena, but also can lead to new solutions for bio-inspired drug/gene delivery systems. Force spectroscopy of liposomes is the most direct way to understand mechanical properties of vesicles, however, with the current technologies it is very challenging to do force spectroscopy on nanoscale liposomes in solution. The current state-of-the-art technique, atomic force spectroscopy (AFM) is expensive and time- consuming, is low-throughput, and requires highly-trained operators and complex sample preparation. Furthermore, there is currently no method that can separate and sort vesicles based on their mechanical properties, limiting our ability to directly compare mechanical properties with functional characteristics. In this project we will develop a nanopore based force spectroscopy method, that overcomes limitations of AFM, to characterize the mechanical properties of nanoscale liposomes and can sort liposomes based on their mechanical properties. Two specific aims of this are Aim 1: to detect and measure varied mechanical properties of nanoscale vesicles using resistive pulse sensing in solid-state nanopores, and Aim 2: to develop an automated feedback-controlled system that can sort nanovesicles based on their mechanical properties. The proposed nanopore force spectroscopy can be used to characterize mechanical properties of naturally- occurring nanovesicals such as viruses, exosomes, etc. In addition, an automated feedback-controlled system will be developed that can separate samples of desired mechanical properties (e.g. rigidity) out of a mixed population of vesicles with varied properties. Such a platform can be used to sort heterogeneous biological samples based on their mechanical behavior and study the functional role of biomechanics at the nanoscale.
项目总结

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple consecutive recapture of rigid nanoparticles using a solid-state nanopore sensor.
  • DOI:
    10.1002/elps.201700329
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lee JS;Peng B;Sabuncu AC;Nam S;Ahn C;Kim MJ;Kim M
  • 通讯作者:
    Kim M
Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.
  • DOI:
    10.3390/s17051091
  • 发表时间:
    2017-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Freedman KJ;Goyal G;Ahn CW;Kim MJ
  • 通讯作者:
    Kim MJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MinJun Kim其他文献

MinJun Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MinJun Kim', 18)}}的其他基金

Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
  • 批准号:
    10158532
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
  • 批准号:
    9979218
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Nanopore Force Spectroscopy and Sorting of Vesicles at Nanoscale
纳米级囊泡的纳米孔力光谱和分选
  • 批准号:
    9340833
  • 财政年份:
    2016
  • 资助金额:
    $ 7.07万
  • 项目类别:

相似海外基金

Subsurface imaging of magnetic nanoparticles and quantification of nanomechanical properties of polymeric and biological materials by bimodal atomic force microscopy
通过双峰原子力显微镜对磁性纳米粒子进行地下成像并量化聚合物和生物材料的纳米机械性能
  • 批准号:
    318205773
  • 财政年份:
    2016
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Research Grants
High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
  • 批准号:
    1063279
  • 财政年份:
    2011
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Continuing Grant
Real-time biological imaging by atomic force microscopy
原子力显微镜实时生物成像
  • 批准号:
    341441-2007
  • 财政年份:
    2006
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Development of video atomic force microscopy for in vivo bioimaging of biological processes
开发用于生物过程体内生物成像的视频原子力显微镜
  • 批准号:
    BB/E001378/1
  • 财政年份:
    2006
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Research Grant
Electrohydrodynamics of Atomic Force Microscopy Imaging of Biological Membranes
生物膜原子力显微镜成像的电流体动力学
  • 批准号:
    0323564
  • 财政年份:
    2005
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Standard Grant
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2002
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Discovery Grants Program - Individual
Force controlled atomic force microscopy for biological specimen.
用于生物样本的力控原子力显微镜。
  • 批准号:
    10650030
  • 财政年份:
    1998
  • 资助金额:
    $ 7.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了