A New Paradigm in Nanomedicine: can structural interiors of nanoparticles regulate cellular delivery?
纳米医学的新范式:纳米粒子的结构内部可以调节细胞传递吗?
基本信息
- 批准号:9169439
- 负责人:
- 金额:$ 226.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:BiodistributionBiologicalCell LineCellsChemical WarfareChemicalsChemistryCommunicable DiseasesCytoplasmDevelopmentDiseaseEncapsulatedEndocytosisEndosomesEngineeringFDA approvedFormulationGene DeliveryGenesGoalsHumanLipidsLiposomesMedicineMembraneNeuronsOligonucleotidesPharmaceutical PreparationsProcessPropertyProteinsRNARNA InterferenceRNA Interference TherapyRNA SequencesRestShapesSiteSmall Interfering RNAStem cellsStructureSurfaceSystemTechnologyTherapeuticTissuesWorkcancer paincapsulecostdesignexperienceknock-downmeetingsnanomedicinenanoparticlenanoscalenext generationnovelparticlesuccessuptakevector
项目摘要
One of the most promising engineering contributions to medicine is the development of nanoscale drug
capsules that are invisible to healthy tissue while specifically directed to attack a diseased site. In the last 10
years, nanomedicine has experienced a surge of new opportunities expanding therapy to undrugable proteins
with the discovery that small exogenous RNA bits delivered to the cytoplasm are able to deploy the shutdown
of specific genes. We are now able to make short (19-21 bp) RNA sequences that can in principle turn off any
given gene but none of this technology is useful until an efficient delivery vehicle is identified. RNAi therapy is
currently experiencing a revival due to remarkable improvements in efficacy and viability through
oligonucleotide chemical manipulations and/or via their packaging into nano-scale carriers but at present there
is no FDA approved system for the application in humans. The design of the next generation of siRNA carriers
requires a deep understanding of how nanoparticle's physicochemical properties truly impart biological
stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order
to meet adequate biodistribution profiles. However, the central hurdle in siRNA carrier design remains at the
cellular level. Typically, an RNA-carrying particle will penetrate the cell via endocytosis and rest trapped until
decomposition. In this work we will highlight the fact that the disruption of endosomes encompasses
membrane transformations (for example pore formation) that cost significant elastic energy. In addition to
surface chemistry, nanoparticle size and shape have been identified as relevant parameters controlling
cellular uptake. In this work we propose that nanoparticle structural interiors are a novel handle to regulate
endosomal escape. Lipid nanoparticles (LNP) have been long recognized as promising siRNA delivery vectors
however virtually all studies are locked to the concept of using liposome formulations. In this work we will instill
a new direction of LNP design where nanoparticle interiors comprise highly ordered networks of membranes
with high surface-to-volume ratios and intrinsic membrane properties prone to disrupt endosomal membranes
at minimal energetic cost. We will employ careful structural characterization of the nanoparticles combined
with quantitative functional studies of siRNA delivery and gene knockdown to a variety of cell lines, including
neurons and stem cells that are known to be hard to transfect. It is our goal to underpin the correlation between
nanoparticle internal structures with the dynamic process of siRNA cellular delivery and enable the next
generation of highly efficient RNAi nanomedicine.
对医学最有希望的工程贡献之一是纳米药物的开发
健康组织看不见的胶囊,但专门用于攻击患病部位。在过去的10年里
多年来,纳米医学经历了大量新的机会,将治疗扩展到不可药物的蛋白质
随着发现传递到细胞质的小的外源RNA片段能够部署关闭
特定的基因。我们现在能够制作短的(19-21bp)RNA序列,原则上可以关闭任何
但在找到有效的运输工具之前,这项技术都没有用。RNAi疗法是
目前正在经历复兴,这是由于以下方面的效率和生存能力的显著改善
寡核苷酸化学操作和/或通过将其包装成纳米级载体,但目前有
没有FDA批准的用于人类应用的系统。下一代siRNA载体的设计
需要深入了解纳米颗粒的物理化学性质如何真正赋予生物
稳中求进,提高工作效率。例如,我们现在知道,纳米颗粒需要在空间上稳定才能
以满足足够的生物分布特征。然而,siRNA载体设计的中心障碍仍然是
细胞水平。通常情况下,携带rna的颗粒会通过内吞作用穿透细胞,并停留在细胞内直到
腐烂。在这项工作中,我们将强调这样一个事实,内小体的破坏包括
需要大量弹性能量的膜转换(例如,孔洞形成)。除了……之外
表面化学、纳米颗粒的大小和形状被确定为相关的控制参数
细胞摄取。在这项工作中,我们提出了纳米颗粒结构内部是一种新的调控手柄
内体逃逸。脂质纳米粒(LNP)是一种很有前途的siRNA传递载体
然而,几乎所有的研究都局限于使用脂质体制剂的概念。在这项工作中,我们将灌输
纳米粒子内部由高度有序的膜网络组成的LNP设计的新方向
高表面积体积比和固有的膜特性容易破坏内体膜
以最低的能源成本。我们将对组合后的纳米颗粒进行仔细的结构表征
通过对多种细胞系的siRNA传递和基因敲除的定量功能研究,包括
已知难以转化的神经元和干细胞。我们的目标是巩固两者之间的关联
纳米粒子内部结构具有动态的siRNA细胞递送过程,并使下一步
高效RNAi纳米药物的产生。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microfluidics Synthesis of Gene Silencing Cubosomes.
- DOI:10.1021/acsnano.8b03770
- 发表时间:2018-09-25
- 期刊:
- 影响因子:17.1
- 作者:Kim H;Sung J;Chang Y;Alfeche A;Leal C
- 通讯作者:Leal C
Self-organization of Nucleic Acids in Lipid Constructs.
- DOI:10.1016/j.cocis.2016.09.006
- 发表时间:2016-12
- 期刊:
- 影响因子:8.9
- 作者:Kang M;Kim H;Leal C
- 通讯作者:Leal C
Nanoscale partitioning of paclitaxel in hybrid lipid-polymer membranes.
- DOI:10.1039/c8an00838h
- 发表时间:2018-08-06
- 期刊:
- 影响因子:0
- 作者:Tuteja M ;Kang M ;Leal C ;Centrone A
- 通讯作者:Centrone A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cecilia Leal其他文献
Cecilia Leal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cecilia Leal', 18)}}的其他基金
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 226.75万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10446400 - 财政年份:2022
- 资助金额:
$ 226.75万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10640114 - 财政年份:2022
- 资助金额:
$ 226.75万 - 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
- 批准号:
10798629 - 财政年份:2022
- 资助金额:
$ 226.75万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 226.75万 - 项目类别:
Research Grant














{{item.name}}会员




