Integrated Cancer Modeling: A New Dimension
综合癌症建模:新维度
基本信息
- 批准号:9812144
- 负责人:
- 金额:$ 8.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmBiologicalBiopsyCancer ModelClinicalClinical TreatmentDataData QualityDiagnosisDiagnostic ImagingDimensionsEpigenetic ProcessFoundationsGeneticGenomicsGoalsImageImaging TechniquesIndividualInstitutesLeadLiteratureLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungMeasuresMethodsMicroscopeModelingOutcomePathologicPathologistPerformancePhenotypePositron-Emission TomographyProceduresPropertyProteomicsPublishingReportingResearchSamplingSeriesSlideSourceStatistical ModelsTechniquesTestingThe Cancer Genome AtlasTissuesUniversitiesanalysis pipelineanticancer researchcancer imagingcancer riskcancer therapyclinical practiceclinically relevantdata integrationdesignhigh dimensionalityinnovationinsightleukemiamalignant breast neoplasmmelanomanovelnovel strategiesradiological imagingradiologistsimulationtreatment responsetumor
项目摘要
Project Summary
Significant effort has been devoted to cancer modeling, exploring statistical models that can more accurately
describe cancer outcomes/phenotypes. Taking advantage of data collected at Yale University and other institutes
and publicly available data (especially TCGA), we have conducted extensive research on integrated cancer
modeling using various types of omics data. In the clinical practice of most if not all cancers, imaging techniques
have been routinely used. Specifically, radiologists use CT/MRI/PET and other techniques, generate radiological
images, and report the “macro” features of tumors. Then with samples retrieved via biopsy, pathologists review
the slides of representative sections of tissues and make definitive diagnosis – this procedure generates
pathological (diagnostic) images, which contain rich information on the “micro” features of tumors. Omics and
pathological imaging data have been separately analyzed and established as highly effective for cancer modeling.
However, a critical and practically highly relevant question, which remains unanswered, is “for more accurate
cancer modeling, is it necessary to integrate omics and pathological imaging data?”.
Our ultimate goal is to more effectively model cancer outcomes/phenotypes by integrating multiple
sources/types of data, so as to advance cancer research and practice. In this study, we will take advantage of
data recently collected under multiple Yale studies and TCGA, significantly expand the integrated analysis
paradigm developed for omics data, and innovatively integrate various types of omics and pathological imaging
data for cancer modeling. Three highly interconnected aims have been designed to comprehensively and
complementarily study different perspectives of data integration. Aim 1: Assess the degree of overlapping
information in cancer-associated omics and imaging features/models. This analysis will reveal whether
overall omics and imaging data contain independent information and its degree, which is the foundation of data
integration. Aim 2: Identify individual imaging (omics) features that are independently associated with
cancer beyond omics (imaging) features. This analysis will identify the most important imaging/omics features,
which are likely to have the highest scientific, clinical, and statistical value. Aim 3: Construct integrated models
using all omics and imaging features. This analysis can lead to “mega” models, which are superior to those
constructed using omics and imaging data separately, as well as rigorous measures of improvement. Such
results will have high clinical relevance.
This study will deliver an innovative analysis pipeline and multiple novel methods for integrating omics
and pathological imaging data. With omics and pathological imaging data now routinely collected in cancer
research and practice, this study will open a new venue and have a high and long-lasting impact.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
- 批准号:
10725293 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10515491 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10676303 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
- 批准号:
9306472 - 财政年份:2017
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10668282 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10311368 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
- 批准号:
9079917 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10451680 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
- 批准号:
10203852 - 财政年份:2015
- 资助金额:
$ 8.38万 - 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
- 批准号:
9238753 - 财政年份:2014
- 资助金额:
$ 8.38万 - 项目类别: