Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
基本信息
- 批准号:9306472
- 负责人:
- 金额:$ 8.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsBiologicalCancer BiologyCancer ModelClinicalComputational algorithmCopy Number PolymorphismDNADNA MethylationDataData AnalysesDatabasesDevelopmentDimensionsEnsureEpigenetic ProcessEvaluationFosteringGene ExpressionGene Expression ProfilingGenesIndividualLaplacianMalignant NeoplasmsMalignant neoplasm of lungMeasurementMethodologyMethodsMethylationMicroRNAsModelingMolecular ProfilingNetwork-basedNoiseNon-Hodgkin&aposs LymphomaOutcomePathway interactionsPerformancePhenotypeReproducibilityResearchResourcesSignal TransductionSkin CancerSystemTestinganticancer researchbasecancer biomarkerscancer gene expressioncancer typeclinical practicecostdata collection methodologydrug developmentexperiencegene functioninnovationlymph nodesmelanomanovelprogramssecondary analysissimulationtargeted treatmenttherapeutic developmenttherapeutic targettrend
项目摘要
Project Summary
For a large number of cancer types, gene expression (GE) profiling studies have been extensively conducted.
Analyzing data so generated has led to a better understanding of cancer biology, effective markers for drug
development, and clinically useful prediction models. With cancer GE data, network-based analysis, which takes
a system perspective and more effectively accounts for the interconnections among genes, has led to important
findings beyond individual-gene-based and pathway-based analyses. With analysis conducted at a higher
functional level, such findings are usually more stable and more reproducible.
Despite tremendous effort, GE data analysis results are still often unsatisfactory, because of “a lack of
information” caused by the low signal-to-noise ratio and high data dimensionality. In recent cancer research, a
prominent trend is to conduct multidimensional studies, which collect data on GEs as well as other types of omics
measurements on the same subjects. GE levels are regulated by CNVs, microRNAs, DNA methylation, and
others, and thus regulators contain information on GEs. In individual-gene-based analysis, our group and others
have shown that effectively extracting information from regulators can assist the analysis of GE data.
Advancing from the existing studies, we will develop a novel ANGEA (Assisted Network-based Gene
Expression Analysis) framework and a set of innovative methods. This study will be among the first to more
effectively conduct network-based GE data analysis by “borrowing information” from regulators. It consists of
three tightly integrated aims. (Aim 1) Develop novel assisted methods for identifying gene network modules and
hubs. Advancing from the existing studies, we will construct a more comprehensive network which is composed
of both GEs and their regulators. Novel regularization methods will be developed for constructing the network
Laplacian and identifying modules and hubs. (Aim 2) Develop an assisted method for building GE models for
cancer outcomes and phenotypes. Significantly advancing from the existing studies, we will develop a novel
method which directly incorporates regulators in GE modeling and explicitly borrows information in estimation
and marker selection. (Aim 3) Analyze data on multiple cancer types. Data will be collected from our own studies
and public resources. With our unique expertise, we will first analyze data on the cancers of skin, lung, and lymph
node. Data on other cancer types will also be analyzed. The analysis results will undergo extensive statistical
and bioinformatics evaluations. We will conduct extensive comparisons with the alternatives.
We will deliver a novel analysis framework and a set of competitive methods. Such methods, although
developed for GE data, will also be applicable to the analysis of other types of data. With an equal emphasis on
data analysis, this study will foster the research and clinical practice of multiple cancer types.
项目摘要
对于大量的癌症类型,基因表达(GE)分析研究已经广泛进行。
分析如此生成的数据有助于更好地了解癌症生物学,药物治疗的有效标志物,
开发和临床上有用的预测模型。利用癌症GE数据,进行基于网络的分析,需要
一个系统的观点,更有效地解释了基因之间的相互联系,导致了重要的
超越基于个体基因和基于路径的分析。分析结果显示,
在功能水平上,这样的发现通常更稳定,更可重复。
尽管付出了巨大的努力,通用电气的数据分析结果仍然往往不令人满意,因为“缺乏
低信噪比和高数据维数导致的“信息”。在最近的癌症研究中,
一个突出的趋势是进行多维研究,收集关于GE以及其他类型组学的数据
在相同的主题上进行测量。GE水平受CNV、microRNA、DNA甲基化和
因此,监管机构包含有关通用电气公司的信息。在基于个体基因的分析中,
已经表明,有效地从监管机构提取信息可以帮助分析GE数据。
在现有研究的基础上,我们将开发一种新的ANGEA(Assisted Network Based Gene
表达式分析)框架和一套创新的方法。这项研究将是第一个到更多的
通过从监管机构“借用信息”,有效地进行基于网络的GE数据分析。它包括
三个紧密结合的目标。(Aim 1)开发用于识别基因网络模块的新的辅助方法,
枢纽在现有研究的基础上,我们将构建一个更全面的网络,
和他们的监管者。将开发新的正则化方法来构建网络
拉普拉斯算子和识别模块和集线器。(Aim 2)开发一种辅助方法,用于构建GE模型,
癌症结果和表型。在现有研究的基础上,我们将开发一种新的
一种直接将调节器纳入GE建模并在估计中显式借用信息的方法
和标记选择。(Aim 3)分析多种癌症类型的数据。数据将从我们自己的研究中收集
和公共资源。凭借我们独特的专业知识,我们将首先分析皮肤癌,肺癌和淋巴癌的数据
node.还将分析其他癌症类型的数据。分析结果将进行广泛的统计
和生物信息学评价。我们将与替代方案进行广泛的比较。
我们将提供一个新颖的分析框架和一套有竞争力的方法。这些方法,虽然
为通用电气数据开发的数据分析软件也将适用于其他类型数据的分析。同时强调
通过数据分析,本研究将促进多种癌症类型的研究和临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
- 批准号:
10725293 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10515491 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10676303 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10668282 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10311368 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
- 批准号:
9079917 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10451680 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
- 批准号:
10203852 - 财政年份:2015
- 资助金额:
$ 8.38万 - 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
- 批准号:
9238753 - 财政年份:2014
- 资助金额:
$ 8.38万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant