Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
基本信息
- 批准号:10676303
- 负责人:
- 金额:$ 12.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAgeAnticoagulantsArchitectureAtrial FibrillationBlood PlateletsCardiovascular DiseasesCase StudyClinicalClinical TrialsClinical Trials DesignCollaborationsComplementComputer softwareComputerized Medical RecordCoronary heart diseaseDataData AnalysesDatabasesDevelopmentDevicesElderlyEnrollmentEnsureFDA approvedFriendsFutureHeart failureImplantable DefibrillatorsInfrastructureInjury to KidneyMarketingMedical RecordsMedicareMethodologyMethodsModelingObservational StudyOralPatientsPerformancePersonsPharmaceutical PreparationsPopulationPrimary PreventionProceduresPropertyPublishingPythonsReproducibilityResearchRiskSafetySolidSpironolactoneStatistical ModelsSurvival AnalysisTechniquesTestingUnited States Department of Veterans Affairsacute coronary syndromeanalysis pipelineantagonistclinical practiceclinically significantcomparative effectivenesscomparative efficacycooperative studydata warehousedeep learningdesignexperienceflexibilityimmune functionimprovedinnovationinsurance claimsloss of functionmortalityprogramsprototyperandomized, clinical trialsrelative effectivenesssimulationsoftware developmentsuccesssurvival outcometreatment effect
项目摘要
Project Summary
To objectively quantify the relative effectiveness of drugs, devices, and treatment procedures on survival
outcomes of cardiovascular diseases (CVDs), rigorously designed and executed randomized clinical trials
(RCTs) remain as the gold standard. However, for many problems, RCTs either have failed or are not feasible.
Luckily, the fast development of electronic medical record (EMR) and insurance claims databases makes it
possible to mine a large amount of observational data and efficiently complement RCTs. Among the available
observational data analysis techniques that aim to draw RCT-type conclusions, emulation has emerged as
especially attractive, given its trial-like architecture, interpretability, and scalability. It has been applied to CVDs
for over twenty years and led to many important findings.
This study has two aims. The first aim is to develop a deep learning (DL)-based emulation analysis
pipeline, methods, and software. Most of the existing emulation analyses are based on “classic” regression
techniques. Very recently, our group was the first to develop DL-based emulation analysis with application to
CVDs. Compared to regression, DL excels by having superior model fitting and flexibly accommodating
unspecified nonlinear effects. Built on our recent success, this project will methodologically significantly advance
by developing cutting-edge DL-based emulation analysis with more effective estimation (that has the much-
desired robustness property and significantly improved stability and interpretability), comprehensive and valid
inference (which is essential for making definitive conclusions on treatment effects but missing in most DL
studies), and friendly software (to facilitate broad utilization). This methodological effort can substantially expand
the scope of emulation analysis, deep learning, causal inference, observational data analysis, and medical
record/insurance claims data analysis. The second aim is to conduct two clinically highly significant case studies.
The first case study is on evaluating the effect of ICD (Implantable Cardioverter Defibrillator) on all-cause
mortality in the VA (Department of Veterans Affairs) elderly population. The clinical trial targeting at addressing
this problem failed because of low enrollment. As part of the VA CAUSAL Initiative, emulation was proposed as
a viable solution to “replace” the trial. The second case study is on evaluating the comparative efficacy of
Rivaroxaban versus Dabigatran on the mortality of AF (atrial fibrillation) patients in the Medicare population, for
which an RCT is unlikely with both drugs FDA-approved and already popularly used. Beyond directly informing
clinical practice, research under this aim can also complement and advance the VA CAUSAL Initiative as well
as serve as a prototype for future applications of the proposed approach.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
- 批准号:
10725293 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10515491 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
- 批准号:
9306472 - 财政年份:2017
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10668282 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10311368 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
- 批准号:
9079917 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10451680 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
- 批准号:
10203852 - 财政年份:2015
- 资助金额:
$ 12.56万 - 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
- 批准号:
9238753 - 财政年份:2014
- 资助金额:
$ 12.56万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Research Fellowships














{{item.name}}会员




