Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
基本信息
- 批准号:10515491
- 负责人:
- 金额:$ 12.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAgeAnticoagulantsArchitectureAtrial FibrillationCardiovascular DiseasesCase StudyClinicalClinical TrialsClinical Trials DesignCollaborationsComplementComputer softwareComputerized Medical RecordCoronary heart diseaseDataData AnalysesDatabasesDevelopmentDevicesElderlyEnrollmentEnsureFDA approvedFutureGoldHeart failureImplantable DefibrillatorsInfrastructureInjury to KidneyMedical RecordsMedicareMethodologyMethodsModelingObservational StudyOralPatientsPerformancePersonsPharmaceutical PreparationsPopulationPrimary PreventionProceduresPropertyPublishingPythonsRandomized Clinical TrialsReproducibilityResearchRiskSafetySolidSpironolactoneStatistical ModelsSurvival AnalysisTechniquesTestingUnited States Department of Veterans Affairsacute coronary syndromeanalysis pipelineantagonistbaseclinical practiceclinically significantcomparative effectivenesscomparative efficacycooperative studydata warehousedeep learningdesignexperienceflexibilityimmune functionimprovedinnovationinsurance claimsloss of functionmortalityprogramsprototyperelative effectivenesssimulationsoftware developmentsuccesssurvival outcometreatment effect
项目摘要
Project Summary
To objectively quantify the relative effectiveness of drugs, devices, and treatment procedures on survival
outcomes of cardiovascular diseases (CVDs), rigorously designed and executed randomized clinical trials
(RCTs) remain as the gold standard. However, for many problems, RCTs either have failed or are not feasible.
Luckily, the fast development of electronic medical record (EMR) and insurance claims databases makes it
possible to mine a large amount of observational data and efficiently complement RCTs. Among the available
observational data analysis techniques that aim to draw RCT-type conclusions, emulation has emerged as
especially attractive, given its trial-like architecture, interpretability, and scalability. It has been applied to CVDs
for over twenty years and led to many important findings.
This study has two aims. The first aim is to develop a deep learning (DL)-based emulation analysis
pipeline, methods, and software. Most of the existing emulation analyses are based on “classic” regression
techniques. Very recently, our group was the first to develop DL-based emulation analysis with application to
CVDs. Compared to regression, DL excels by having superior model fitting and flexibly accommodating
unspecified nonlinear effects. Built on our recent success, this project will methodologically significantly advance
by developing cutting-edge DL-based emulation analysis with more effective estimation (that has the much-
desired robustness property and significantly improved stability and interpretability), comprehensive and valid
inference (which is essential for making definitive conclusions on treatment effects but missing in most DL
studies), and friendly software (to facilitate broad utilization). This methodological effort can substantially expand
the scope of emulation analysis, deep learning, causal inference, observational data analysis, and medical
record/insurance claims data analysis. The second aim is to conduct two clinically highly significant case studies.
The first case study is on evaluating the effect of ICD (Implantable Cardioverter Defibrillator) on all-cause
mortality in the VA (Department of Veterans Affairs) elderly population. The clinical trial targeting at addressing
this problem failed because of low enrollment. As part of the VA CAUSAL Initiative, emulation was proposed as
a viable solution to “replace” the trial. The second case study is on evaluating the comparative efficacy of
Rivaroxaban versus Dabigatran on the mortality of AF (atrial fibrillation) patients in the Medicare population, for
which an RCT is unlikely with both drugs FDA-approved and already popularly used. Beyond directly informing
clinical practice, research under this aim can also complement and advance the VA CAUSAL Initiative as well
as serve as a prototype for future applications of the proposed approach.
项目摘要
客观地量化药物、设备和治疗程序对生存的相对有效性
心血管疾病(CVD)的结局,严格设计和执行随机临床试验
(RCT)仍然是黄金标准。然而,对于许多问题,RCT要么失败了,要么不可行。
幸运的是,电子病历(EMR)和保险索赔数据库的快速发展使得
有可能挖掘大量观测数据,并有效补充随机对照试验。在可用的
旨在得出RCT类型结论的观测数据分析技术,仿真已经出现为
考虑到它类似试验的体系结构、可解释性和可伸缩性,它特别有吸引力。它已被应用于心血管疾病
二十多年,并导致了许多重要的发现。
这项研究有两个目的。第一个目标是开发基于深度学习的仿真分析
流水线、方法和软件。现有的大多数仿真分析都是基于“经典”回归
技巧。最近,我们团队率先开发了基于动态链接库的仿真分析,并应用于
心血管病。与回归相比,DL具有更好的模型拟合度和灵活的适应性
未指明的非线性效应。在我们最近成功的基础上,这个项目将在方法上取得重大进展
通过开发具有更有效估计的基于动态链接库的尖端仿真分析(这具有更多的
期望的健壮性和显著改进的稳定性和可解释性),全面和有效
推论(对于对治疗效果作出明确结论是必不可少的,但在大多数DL中是缺失的
学习)和友好的软件(便于广泛使用)。这种方法论的努力可以大大扩展
仿真分析、深度学习、因果推理、观测数据分析和医学的范围
记录/保险索赔数据分析。第二个目标是进行两个具有高度临床意义的案例研究。
第一个案例研究是关于评价ICD(植入式心脏复律除颤器)对全因心脏复律的影响
退伍军人事务部老年人口死亡率。旨在解决以下问题的临床试验
由于注册人数较少,此问题失败。作为退伍军人事务部因果倡议的一部分,模拟被提议为
一个可行的解决方案来“取代”试验。第二个案例研究是关于评价两种药物的比较疗效。
利伐沙班与达比卡特兰在医疗保险人群中对房颤患者死亡率的比较
在FDA批准和已经广泛使用的两种药物的情况下,不太可能进行随机对照试验。不仅仅是直接告知
临床实践,这一目标下的研究也可以补充和促进VA因果倡议
作为拟议方法未来应用的原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
- 批准号:
10725293 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
- 批准号:
10676303 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
- 批准号:
9306472 - 财政年份:2017
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10668282 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10311368 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
- 批准号:
9079917 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
- 批准号:
10451680 - 财政年份:2016
- 资助金额:
$ 12.56万 - 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
- 批准号:
10203852 - 财政年份:2015
- 资助金额:
$ 12.56万 - 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
- 批准号:
9238753 - 财政年份:2014
- 资助金额:
$ 12.56万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 12.56万 - 项目类别:
Research Fellowships














{{item.name}}会员




