Ecological determinants of natural product synthesis in cave myxobacteria
洞穴粘细菌天然产物合成的生态决定因素
基本信息
- 批准号:9811794
- 负责人:
- 金额:$ 6.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Actinobacteria classAntibioticsApoptosisBenchmarkingBiologicalBiologyBurkholderiaCell LineCell physiologyCellsCellular AssayChemicalsColumn ChromatographyCuesDNA DamageDataDictyosteliumEcosystemEscherichia coliEvaluationFamilyFluorescent Antibody TechniqueFoundationsFutureGene ClusterGenomeGenomicsGoalsHumanIncubatedLaboratoriesMalignant NeoplasmsMammalian CellMass Spectrum AnalysisMetabolismMethodsMolecularMyxococcalesMyxococcus xanthusNatural ProductsNeoplasm MetastasisOrganismPathway interactionsPredatory BehaviorProductionProtein-Serine-Threonine KinasesProteobacteriaRegulationResearchResearch ProposalsRoleSourceStimulusStreptomycesStructureTechniquesTestingTherapeuticVariantbasecancer cellcancer therapycellular targetingcomparativecompetitive environmentdrug discoveryemerging antibiotic resistancegenome sequencinginsightion mobilitymetabolomemetabolomicsmicrobialmicroorganismnovelpressureresponsesocialtandem mass spectrometry
项目摘要
SUMMARY/ABSTRACT
Natural products (NPs) isolated from diverse sources stock the majority of our nation's biomedical
arsenal. Due to emerging antibiotic resistance and limited cancer treatments, additional NP discoveries are of
fundamental importance. Microbial genomics has unveiled `gifted' microorganisms—those capable of
synthesizing many structurally diverse NPs. However, most gifted microorganisms do not synthesize NPs
under laboratory conditions. Understanding elicitors that activate NP synthesis would enable the discovery of
new and potentially therapeutic NPs.
In select gifted microorganisms (e.g. actinobacteria), chemical and biological elicitors modulate NP
production; in others (e.g. myxobacteria), the effects of chemical and biological stimuli are unknown. Three
lines of evidence support a role for chemical and biological stimuli in myxobacterial NP regulation. First,
myxobacteria rely on NPs for predation. Second, myxobacterial genomes are enriched for regulatory networks,
such as serine-threonine protein kinases, which detect and respond to external stimuli. Third, preliminary data
described herein is consistent with our hypothesis. Chemical (the sub-lethal antibiotic norfloxacin) and
biological (the prey E. coli and the predator Dictyostelium descoideum AX-2) stimuli modulate known and
putative novel natural products in Myxococcus xanthus DK1622. For these reasons, we hypothesize that
biological and chemical stimuli modulate myxobacterial NP synthesis. The proposed project assesses the
consequence of competitive stimuli on myxobacterial secondary metabolism, evaluates their bioactivity against
a cancer line, and elucidates the structure of myxobacterial NPs.
In Aim 1, the consequences of chemical and biological stimuli on myxobacterial secondary metabolism
will be further investigated. Ecological stimuli (bi-partite competitor cultures, tripartite predatory/prey cultures,
sub-lethal antibiotics) will be presented to myxobacteria (domesticated and cave-isolated) and the resultant
metabolome will be evaluated by mass spectrometry. Select features will be targeted for isolation based on
divergence from known myxobacterial NPs (via molecular networking and ion mobility analyses). Structural
elucidation will be accomplished via column chromatography, tandem mass spectrometry, and NMR.
In Aim 2, myxobacterial metabolomes and metabolites will be assessed for their role in mammalian
chemical biology using multiplexed activity metabolomics (MAM), a high-throughput technique that enables the
simultaneous evaluation of a large number of metabolites against an array of cell subtypes and cellular
pathways. MAM incubates fractionated metabolites against a cancer-derived cell line and assays them against
8-15 fluorescent antibodies targeting cellular function (e.g. apoptosis, DNA damage, and viability). Cytometric
analysis and correlation of the resulting spectral and bioactivity chromatograms prioritizes leads to test against
primary human cancer cells and to structurally decipher (Aim 1).
!
总结/摘要
从不同来源分离的天然产物(NPs)储存了我国大部分的生物医学产品。
阿森纳官方由于新出现的抗生素耐药性和有限的癌症治疗,更多的NP发现是
至关重要。微生物基因组学揭示了“天才”微生物-那些能够
合成许多结构多样的NP。然而,大多数天才微生物不合成NP
在实验室条件下。了解激活NP合成的激发子将有助于发现
新的和潜在的治疗NP。
在选择有天赋的微生物(例如放线菌)中,化学和生物诱导子调节NP
在另一些(例如粘细菌)中,化学和生物刺激的影响是未知的。三
一系列证据支持化学和生物刺激在粘细菌NP调节中的作用。第一、
粘细菌依靠NP进行捕食。其次,粘细菌基因组丰富了调控网络,
例如丝氨酸-苏氨酸蛋白激酶,其检测并响应外部刺激。三、初步数据
这里所描述的与我们的假设一致。化学药物(亚致死抗生素诺氟沙星)和
生物(猎物E.大肠杆菌和捕食者Dictyosteeletum descoideum AX-2)刺激调节已知的和
黄色粘球菌DK 1622中推定的新天然产物。基于这些原因,我们假设,
生物和化学刺激调节粘细菌NP合成。拟议项目评估了
结果的竞争性刺激对粘细菌的次级代谢,评估其生物活性,
癌细胞系,并阐明了粘细菌纳米颗粒的结构。
在目标1中,化学和生物刺激对粘细菌次级代谢的影响
将进一步调查。生态刺激(二分竞争者文化,三分掠夺/猎物文化,
亚致死性抗生素)将呈现给粘细菌(驯化和洞穴隔离),
将通过质谱法评价代谢物组。将根据以下条件选择要隔离的功能
与已知粘细菌NP的差异(通过分子网络和离子迁移率分析)。结构
通过柱色谱法、串联质谱法和NMR来完成解析。
在目标2中,将评估粘细菌代谢物组和代谢物在哺乳动物中的作用,
化学生物学使用多重活性代谢组学(MAM),一种高通量技术,使
同时评价大量代谢物对一系列细胞亚型和细胞毒性的影响,
途径。MAM将分级代谢物与癌源性细胞系孵育,并将其与
8-15靶向细胞功能(例如凋亡、DNA损伤和活力)的荧光抗体。细胞术
对所得光谱和生物活性色谱图进行分析和关联,
原代人类癌细胞和结构破译(目标1)。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caleb Nathaniel Fischer其他文献
Caleb Nathaniel Fischer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 6.16万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 6.16万 - 项目类别:
Studentship














{{item.name}}会员




