Palladium-Catalyzed Aerobic Oxidative C-H Carbonylations: Synthesis and Mechanistic Studies
钯催化有氧氧化 C-H 羰基化反应:合成与机理研究
基本信息
- 批准号:9273898
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2018-03-01
- 项目状态:已结题
- 来源:
- 关键词:AerobicAntibioticsAntioxidantsBenzoquinonesBiologicalCarbon MonoxideCatalysisChemistryCiprofloxacinCopperDevelopmentDigit structureDiseaseDrug IndustryDrug PrescriptionsDrug usageEstersFDA approvedHealthcareHydrogen BondingIn SituIndolesIndustrializationKineticsLawsLevaquinMethodsMolecularNMR SpectroscopyNatural ProductsNuclear Magnetic ResonanceOxidantsPalladiumPharmaceutical PreparationsPharmacologic SubstancePreparationProcessPublishingQuinolonesReactionReagentResearchResearch PersonnelRestRoentgen RaysRoleSaltsSilverSodium ChlorideSourceSpectrum AnalysisTechniquesTimeTryptaminesWaterWorkabsorptionaryl halidecarboxylatecatalystdesigndrug developmentimprovedinnovationinstrumentationmethod developmentpara-benzoquinonepressurepreventpublic health relevancescaffoldscale upscreeningwasting
项目摘要
DESCRIPTION (provided by applicant): Heterocycles are ubiquitous in pharmaceutical compounds, natural products, and other bioactive compounds. For this reason, new methods for their preparation are sought after by researchers. A notable catalytic reaction for the preparation
of heterocycles is palladium-catalyzed carbonylation. This reaction uses carbon monoxide as a C1 source for the heterocycle. Many palladium-catalyzed carbonylation reactions have (pseudo)halide functionality built into the substrate to improve the regioselectivity of the reaction. However, this halide functionality is often installed into the substrate using waste-generating and time-consuming manipulations. An attractive alternative to this so-called "classical" carbonylation reaction is the palladium-catalyzed aerobic oxidative C-H carbonylation reaction. Under these conditions, a (pseudo)halide in the substrate is replaced with a C-H bond, and an oxidant is used to attain catalytic turnover. Directed aerobic oxidative C-H carbonylation is attractive because the only byproduct of the reaction is water, O2 can be used as the terminal oxidant, and heterocycle products can be synthesized with excellent regiocontrol. However, many published directed oxidative carbonylation reactions use stoichiometric amounts of cooxidants such as copper(II), silver(I), and 1,4-benzoquinone (BQ) to achieve efficient catalytic turnover, and high loadings of palladium (10 mol%) are typical. These conditions prevent oxidative C-H carbonylation reactions from being applied on an industrial process scale. Ideally, the loading of cooxidants could be reduced to a cocatalytic level, and the loading of palladium could be reduced to the single digits or less mol%. The chemistry proposed herein constitutes a detailed study of the reaction mechanism of a published oxidative C-H carbonylation reaction using innovative techniques such as operando high-pressure NMR spectroscopy and operando X-ray absorption spectroscopy (XAS). The development of high-pressure NMR spectroscopic instrumentation will also be a portion of this project. Additionally, a published reaction that prescribes two equivalents of BQ for aerobic oxidative carbonylation to afford bioactive 3,4-dihydro-β-carbolin-1-ones is targeted for further development by lowering the palladium loading as well as the BQ loading to a cocatalytic level. The substrate scope for this reaction is also targeted for expansion including bioactive targets. Moreover, a new reaction is proposed: The palladium-catalyzed aerobic oxidative C-H carbonylation of 2-ester substituted E-ethenylanilines to 4-quinolone-3-carboxylate esters, which are privileged scaffolds in FDA-approved antibiotics like ciprofloxacin and levofloxacin (a.k.a. Levaquin(r)). The proposed substrate scope of this reaction includes bioactive targets such as approved antibiotics.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen John Tereniak其他文献
Stephen John Tereniak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen John Tereniak', 18)}}的其他基金
Palladium-Catalyzed Aerobic Oxidative C-H Carbonylations: Synthesis and Mechanistic Studies
钯催化有氧氧化 C-H 羰基化反应:合成与机理研究
- 批准号:
9388402 - 财政年份:2016
- 资助金额:
$ 4.92万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Studentship














{{item.name}}会员




