Development of a secure, cloud-based platform to improve record linkage & cross-agency collaboration for the public sector: using deep learning & scalable data integrations to combat the opioid crisis
开发安全的云平台以改善记录链接
基本信息
- 批准号:9622726
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract:
This SBIR Phase I proposal aims to fund research and development for a new, multitenant secure cloud-based
platform specifically tailored to provide local governmental agencies with tools to share datasets and link them
accurately, at high quality and low cost. The OpenLattice platform will focus on reducing drug overdoses and
making drug treatment less fractured. Individual-level datasets linked across medical providers and law
enforcement can support analyses of prescribing pathways and treatment trajectories that precede opioid
overdose, entry into treatment, disruption, and recovery. However, linking data at the individual level has
proven to be a difficult and resource-intensive endeavor compared to use of aggregate-level data, with issues
with deduplication plaguing many institutional databases. With 91 American deaths recorded daily from
opioid overdoses and systems of care spread across multiple institutions, the need for greater and high-quality
data sharing is undeniable. Our test partner for assessing the efficacy of proposed innovations is the Greater
Portland Addiction Collaborative (GPAC) in Maine, a partnership of hospitals, a police department, jail, detox
treatment centers and halfway houses already working together to reduce drug overdoses. This proposal aims
to demonstrate proof of concept for (i) scaling high-quality data integrations across multiple governmental
domains via a standardized entity data model, and (ii) improving record linkage using neural networks.
Firstly, OpenLattice is developing an open source ontology and integration scripts to standardize integration
of datasets into OpenLattice's database. As the individual customization requirements decline for onboarding
customers and integrating new data into the platform, costs will be greatly slashed, removing a significant
barrier to data solutions for smaller counties and cities across the country, who have historically faced custom
integrations, system updates, data storage fees and add-ons at high cost. The OpenLattice platform also
enables use of existing ETL tools and seamless integration with police dispatch systems, emergency medical
calls, healthcare records, and online prescription systems across partners who have committed to data sharing
and collaboration. Secondly, OpenLattice is developing a new, proprietary algorithm for record linkage that
employs a promising but as-yet commercially untested technique: a multilayer perceptron neural network,
more commonly known as deep learning. In pilot research, the linking algorithm has already demonstrated
success rivaling—and sometimes exceeding—current state of the art linking technologies. In Phase I,
OpenLattice will continue to improve ontologies, integration tools, and the deep learning neural network, and
test on publicly available datasets with dissimilar data types and formats, with manual confirmation of results.
When successful, these innovations will address critical barriers to improving clinical practice in treating
opioid addiction by enabling a more comprehensive continuum of care for those in treatment.
项目总结/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joke Durnez其他文献
Joke Durnez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
混沌保密通信若干基础问题研究
- 批准号:61073187
- 批准年份:2010
- 资助金额:11.0 万元
- 项目类别:面上项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Development of Wireless Equipment for Autonomous Rodent Infusion Tasks
用于啮齿动物自主输液任务的无线设备的开发
- 批准号:
10349123 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Electronic Medical Records Ecosystem Cloud Transition Investigation, Planning, and Development for Robust, Scalable and Secure Long-Term Support
电子病历生态系统云转型调查、规划和开发,以提供强大、可扩展和安全的长期支持
- 批准号:
555774-2020 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Applied Research and Development Grants - Level 3
Development of Wireless Equipment for Autonomous Rodent Infusion Tasks
用于啮齿动物自主输液任务的无线设备的开发
- 批准号:
10570991 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
The Development and Evaluation of Enhanced Digital-Chemosensory-Based Olfactory Training for Remote Management of Substance Use Disorders (EDITOR)
用于药物使用障碍远程管理的增强型数字化学感应嗅觉训练的开发和评估(编辑)
- 批准号:
10469912 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Development of a blood pressure monitoring system based on smart-camera video recording
基于智能摄像头录像的血压监测系统的研制
- 批准号:
10255894 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Electronic Medical Records Ecosystem Cloud Transition Investigation, Planning, and Development for Robust, Scalable and Secure Long-Term Support
电子病历生态系统云转型调查、规划和开发,以提供强大、可扩展和安全的长期支持
- 批准号:
555774-2020 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Applied Research and Development Grants - Level 3
Development of a cloud-based network of smartwatch applications to improve cardiopulmonary resuscitation during cardiac arrest response.
开发基于云的智能手表应用程序网络,以改善心脏骤停反应期间的心肺复苏。
- 批准号:
10323236 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别: