Biomedical Computing and Informatics Strategies for Infectious Disease Research

传染病研究的生物医学计算和信息学策略

基本信息

  • 批准号:
    9430380
  • 负责人:
  • 金额:
    $ 87.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): An important goal of infectious disease research is to develop genetic predictors of susceptibility. Our success in this endeavor will depend critically on the informatics methods and software that are available for making sense of high-dimensional genetic and genomic data. The goal of this research program is to develop, evaluate, distribute and support new and novel biomedical computing algorithms and open-source software for identifying combinations of genetic predictors of clinically important infectious disease outcomes. This application will target the growing body of rare genetic variants identified by high-throughput DNA sequencing. Our clinical application will focus on the prediction of antiretroviral response in clinical trials for HIV/AIDS. We propose here a highly innovative Hierarchical Rare Variant Collapsing Machine (HRVCM) algorithm for identifying and collapsing combinations of rare variants across gene regions (AIM 1). We will then integrate these new collapsed HRVCM variables into our popular Multifactor Dimensionality Reduction (MDR) method that will assess them in combination with common single-nucleotide polymorphisms (SNPs) from genome-wide association studies or GWAS (AIM 2). Our novel HRVCM-MDR approach will, for the first time, make it possible to assess non-additive interactions among sets of rare and common variants simultaneously in genetic studies of infectious diseases. We will apply these new and novel methods to approximately 13 million rare and common variants from nearly 3000 subjects that participated in an AIDS Clinical Trials Group (ACTG) study to evaluate risk for virologic failure with efavirenz-containing antiretroviral therapy (ART) regimens (AIM 3). Finally, we will release all methods as open source to the biomedical research community through our freely available MDR software package (AIM 4).


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason H. Moore其他文献

A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics
用于心脏和调控基因组学中变异致病性的疾病特异性语言模型
  • DOI:
    10.1038/s42256-025-01016-8
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Huixin Zhan;Jason H. Moore;Zijun Zhang
  • 通讯作者:
    Zijun Zhang
ChatGPT and large language models in academia: opportunities and challenges
  • DOI:
    10.1186/s13040-023-00339-9
  • 发表时间:
    2023-07-13
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Jesse G. Meyer;Ryan J. Urbanowicz;Patrick C. N. Martin;Karen O’Connor;Ruowang Li;Pei-Chen Peng;Tiffani J. Bright;Nicholas Tatonetti;Kyoung Jae Won;Graciela Gonzalez-Hernandez;Jason H. Moore
  • 通讯作者:
    Jason H. Moore
Erratum to: Why epistasis is important for tackling complex human disease genetics
  • DOI:
    10.1186/s13073-015-0205-8
  • 发表时间:
    2015-09-07
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Trudy F. C. Mackay;Jason H. Moore
  • 通讯作者:
    Jason H. Moore
Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies
组学研究中共享和格式化元数据的感知和技术障碍
  • DOI:
    10.48550/arxiv.2401.02965
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;Michael I. Love;Cynthia Flaire Ronkowski;Dhrithi Deshpande;L. Schriml;Annie Wong;B. Mons;Russell Corbett;Christopher I Hunter;Jason H. Moore;Lana X. Garmire;T.B.K. Reddy;Winston Hide;A. Butte;Mark D. Robinson;S. Mangul
  • 通讯作者:
    S. Mangul
Cluster Analysis reveals Socioeconomic Disparities among Elective Spine Surgery Patients.
聚类分析揭示了选择性脊柱手术患者的社会经济差异。

Jason H. Moore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason H. Moore', 18)}}的其他基金

Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
  • 批准号:
    10616262
  • 财政年份:
    2022
  • 资助金额:
    $ 87.5万
  • 项目类别:
Bioinformatics Strategies for Genome Wide Association Studies
全基因组关联研究的生物信息学策略
  • 批准号:
    10654872
  • 财政年份:
    2022
  • 资助金额:
    $ 87.5万
  • 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
  • 批准号:
    10582512
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10685537
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
  • 批准号:
    10491672
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10491768
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10274448
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Artificial Intelligence Strategies for Alzheimer's Disease Research
阿尔茨海默病研究的人工智能策略
  • 批准号:
    10907083
  • 财政年份:
    2021
  • 资助金额:
    $ 87.5万
  • 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
  • 批准号:
    10366006
  • 财政年份:
    2020
  • 资助金额:
    $ 87.5万
  • 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
  • 批准号:
    10206271
  • 财政年份:
    2020
  • 资助金额:
    $ 87.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了