In vitro and in-cell investigation of the acid-stress chaperone HdeA
酸应激伴侣 HdeA 的体外和细胞内研究
基本信息
- 批准号:9249639
- 负责人:
- 金额:$ 10.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcidityAcidsAffectBacteriaBacterial ProteinsBindingBiological ModelsBiomedical EngineeringBuffersCellsCessation of lifeChemicalsCrowdingDataDimerizationDiseaseDissociationDysenteryEnvironmentFutureGoalsGrantHealthHydrogenHydrophobicityIn VitroInfectionIntestinesInvestigationMethodsMolecularMolecular ChaperonesMolecular ConformationMonitorMotionNMR SpectroscopyNuclear Magnetic ResonanceOccupationsOrganismPathogenicityPeriplasmic ProteinsPhasePhysiologicalPlayPositioning AttributePropertyProtein ConformationProteinsPublicationsRelaxationResearchResearch PersonnelRoleSamplingSideStomachStructureTechniquesTherapeuticTitrationsTravelVaccinesVertebral columnWorkacid stressanalytical toolbiological systemsbiophysical analysisbiophysical propertiescombatdesigndimerexperienceexperimental studyfollow-upimprovedinsightinterestkillingsmindfulnessmonomerpathogenic bacteriaperiplasmpreventprotein foldingprotein functionpublic health relevancevaccine development
项目摘要
DESCRIPTION (provided by applicant): Pathogenic bacteria must travel through the highly acidic environment of the stomach before they can reach and infect the intestines. The stomach is therefore an important barricade which helps to kill many bacteria before they can cause illness. In some of the most infectious bacteria, however, the ATP- independent chaperone HdeA plays a major role in aiding bacterial survival at low pH. HdeA's mechanism of action is rather unique, in that it is an unfolded monomeric protein in its activated state. Its job is to protect other proteins from misfolding and aggregating as the cell transitions through the harsh environment of the stomach and into the neutral environment of the intestines. Once the bacteria enter the intestinal tract, HdeA releases these proteins and refolds into its inactive dimer conformation. Biophysical studies have provided clues that HdeA unfolds below pH 3.0 and interacts with its binding partners using hydrophobic residues found at the dimer interface of the folded protein. However, there is a dearth of data that monitors, in detail, the mechanism of monomerization, unfolding and activation at multiple pH values below 3.0. In addition, the properties of instrinsically disordered proteins are generally not well-understood.
Specific aims. We propose to pursue a thorough, atomic-level investigation of the mechanism of activation of HdeA at low pH, using Nuclear Magnetic Resonance (NMR) spectroscopy as our primary analytical tool. Since it is likely that cellular crowding is an important contributor to or understanding of HdeA activity (especially in its unfolded state) we propose to study the mechanism of HdeA activation both in vitro and in-cell. HdeA will also be an excellent model system to improve our understanding of functionality in an intrinsically disordered protein. Our specific aims are to 1) determine the specific structural and dynamic changes that trigger activation of chaperone activities in HdeA in vitro between pH 3.0 and 2.0 and 2) investigate the differences in structural and dynamic changes that occur in HdeA in-cell or in lysate between pH 6.0 and 2.0 compared to HdeA in vitro. NMR experiments will include titrations to monitor chemical shift changes as a function of pH, hydrogen exchange and 3D experiments to structurally characterize HdeA, and spin relaxation experiments to analyze backbone and side chain protein motions in HdeA at multiple timescales and multiple pH values.
Health-related significance. Dysentery, caused by intestinal infection by pathogenic bacteria, kills over one million people per year worldwide. If we can understand how HdeA senses and is triggered by pH changes, we can better understand how this type of acid-stress chaperone helps bacteria survive under extreme conditions. Armed with this understanding we will be able to improve targeting for vaccines or other therapeutics that can disable the activities of HdeA and thereby weaken the infectivity of these pathogenic bacteria.
描述(由申请人提供):病原菌必须通过胃的高酸性环境才能到达并感染肠道。因此,胃是一个重要的屏障,有助于在细菌致病之前杀死它们。然而,在一些最具感染性的细菌中,ATP非依赖性伴侣蛋白HdeA在帮助细菌在低pH下存活方面起主要作用。HdeA的作用机制相当独特,因为它是处于其活化状态的未折叠单体蛋白。它的工作是保护其他蛋白质免于错误折叠和聚集,因为细胞通过胃的恶劣环境过渡到肠的中性环境。一旦细菌进入肠道,HdeA释放这些蛋白质并重新折叠成其非活性二聚体构象。生物物理学研究提供了线索,HdeA展开低于pH 3.0,并与其结合伙伴使用在折叠蛋白质的二聚体界面发现的疏水残基相互作用。然而,缺乏详细监测在低于3.0的多个pH值下的单体化、解折叠和活化机制的数据。此外,通常还不能很好地理解非线性无序蛋白质的性质。
具体目标。我们建议追求一个彻底的,原子级的调查HdeA在低pH值的激活机制,使用核磁共振(NMR)光谱作为我们的主要分析工具。由于它是可能的,细胞拥挤是一个重要的贡献者或理解的HdeA活性(特别是在其未折叠状态),我们建议在体外和细胞内研究HdeA激活的机制。HdeA也将是一个很好的模型系统,以提高我们对内在无序蛋白质功能的理解。我们的具体目标是:1)确定在pH 3.0和2.0之间触发体外HdeA中伴侣活性活化的特定结构和动态变化; 2)研究与体外HdeA相比,在pH 6.0和2.0之间细胞内或裂解物中HdeA发生的结构和动态变化的差异。NMR实验将包括滴定监测化学位移变化作为pH值的函数,氢交换和3D实验,以结构表征HdeA,和自旋弛豫实验,以分析HdeA中的主链和侧链蛋白质运动在多个时间尺度和多个pH值。
健康相关的意义。由致病菌引起的肠道感染引起的痢疾每年在全世界造成100多万人死亡。如果我们能够理解HdeA如何感知pH值变化并被pH值变化触发,我们就可以更好地理解这种类型的酸应激分子伴侣如何帮助细菌在极端条件下生存。有了这一认识,我们将能够提高疫苗或其他疗法的靶向,使HdeA的活性丧失,从而削弱这些致病菌的感染性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARIN A CROWHURST其他文献
KARIN A CROWHURST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARIN A CROWHURST', 18)}}的其他基金
Synergy between acid stress chaperones HdeA and HdeB with clients and their key sites of activity
酸应激伴侣 HdeA 和 HdeB 与客户及其关键活动位点之间的协同作用
- 批准号:
10334239 - 财政年份:2016
- 资助金额:
$ 10.88万 - 项目类别:
Synergy between acid stress chaperones HdeA and HdeB with clients and their key sites of activity
酸应激伴侣 HdeA 和 HdeB 与客户及其关键活动位点之间的协同作用
- 批准号:
10681291 - 财政年份:2016
- 资助金额:
$ 10.88万 - 项目类别:
In vitro and in-cell investigation of the acid-stress chaperone HdeA
酸应激伴侣 HdeA 的体外和细胞内研究
- 批准号:
8999898 - 财政年份:2016
- 资助金额:
$ 10.88万 - 项目类别:
Synergy between acid stress chaperones HdeA and HdeB with clients and their key sites of activity
酸应激伴侣 HdeA 和 HdeB 与客户及其关键活动位点之间的协同作用
- 批准号:
10487514 - 财政年份:2016
- 资助金额:
$ 10.88万 - 项目类别:
Investigating protein dynamics in NT-4/5 and TrkB receptor interactions
研究 NT-4/5 和 TrkB 受体相互作用的蛋白质动力学
- 批准号:
7939442 - 财政年份:2010
- 资助金额:
$ 10.88万 - 项目类别:
Investigating protein dynamics in NT-4/5 and TrkB receptor interactions
研究 NT-4/5 和 TrkB 受体相互作用的蛋白质动力学
- 批准号:
8274631 - 财政年份:2010
- 资助金额:
$ 10.88万 - 项目类别:
Investigating protein dynamics in NT-4/5 and TrkB receptor interactions
研究 NT-4/5 和 TrkB 受体相互作用的蛋白质动力学
- 批准号:
8098224 - 财政年份:2010
- 资助金额:
$ 10.88万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 10.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)