IL-1 in Protection and Injury
IL-1 的保护和损伤作用
基本信息
- 批准号:9093848
- 负责人:
- 金额:$ 35.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-18 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAnimalsAntioxidantsAstrocytesBiologicalBrainBrain InjuriesCerebral IschemiaCerebrumComplementCysteineCystineDataDevelopmentEconomic BurdenEmotionalExcitatory Amino Acid ReceptorsGenesGlutamatesGlutathioneGoalsGrantHealthHomeostasisHypoxiaIn VitroInflammatoryInjuryInterleukin-1Ischemic PenumbraKnowledgeLaboratoriesLightLinkMediatingMessenger RNAMicrogliaModelingMolecularMorbidity - disease rateMusNatureNeuronal InjuryNeuronsOxidation-ReductionOxidative StressPlayPredispositionProbabilityPublic HealthReceptor SignalingRegulationResearchResistanceRoleSignal TransductionSpecificityStrokeSubstrate SpecificitySystemTestingTimeTissuesTrans-ActivatorsUp-Regulationantiportercerebral ischemic injuryexcitotoxicityextracellulargenetic approachin vitro Modelin vivoin vivo Modelinjurednew therapeutic targetnovelrepairedresponsestoichiometrystroke treatmenttherapeutic targetuptake
项目摘要
DESCRIPTION (provided by applicant): Injury to the brain caused by cerebral ischemia is a major public health concern. Studies have determined that the brain damage associated with cerebral ischemia is mediated by over-stimulation of excitatory amino acid receptors, oxidative stress, as well as inflammatory factors. During the last grant period our laboratory demonstrated that astrocyte-mediated alterations in system xc- (cystine/glutamate antiporter) activity contributes to the development and progression of inflammatory (IL-1beta-enhanced) hypoxic neuronal injury -a model of the ischemic penumbra. Despite this, new preliminary data demonstrate that IL-1beta-mediated upregulation of the same molecule, system xc-, can confer protection against oxidative insults. We speculate that IL-1beta upregulation of astrocyte system xc- may have evolved as a protective mechanism to counteract oxidative stress in injured tissue. However, this increase becomes maladaptive in the setting of compromised glutamate uptake, which occurs in the setting of our hypoxia model in vitro and stroke in vivo. The concept that IL-1beta and system xc- are at the crossroads of injury and protection is particularly intriguing. Studies to systematically and empirically address these ideas, as well as, to elucidate
the regulation of the transporter by IL-1beta at the molecular level are solely needed. Thus, the objectives of this following 5 yr research plan of study are as follows: 1) To determine the mechanism by which IL-1beta regulates astrocyte system xc- expression. State of the art molecular biological approaches will be utilized to assess whether IL-1beta regulates xCT mRNA at the transcriptional and/or post-transcriptional level and to identify the cis and trans-acting factors responsible for the induction and/or stabilization of xCT message. 2) To determine the functional consequence of enhanced system xc- activity. The goal of this aim is to determine whether the IL-1beta-mediated enhancement of system xc- activity, a priori, increases GSH content and confers a selective resistance to oxidative injury under conditions where glutamate uptake is competent both in vitro and in vivo. 3) Using genetic approaches, studies will be undertaken to determine the extent to which IL-1beta signaling regulates system xc- expression following cerebral ischemic injury with the direct question as to whether loss of system xc- function either globally, or in astrocytes specifically, can alter the susceptibility of mouse brai to cerebral ischemic damage. Understanding the regulation of system xc- by IL-1beta is necessary so that we may use this information to devise strategies to harness the beneficial effects (i.e. to
increase GSH levels to reduce oxidative injury), and when appropriate, to employ strategies to reduce its activity to decrease the probability of excitotoxic neuronal injury (i.e. under conditios where glutamate uptake is impaired).
描述(由申请人提供):脑缺血引起的脑损伤是一个主要的公共卫生问题。研究表明,与脑缺血相关的脑损伤是由兴奋性氨基酸受体的过度刺激、氧化应激以及炎症因子介导的。在上一次资助期间,我们的实验室证明,星形胶质细胞介导的系统 xc-(胱氨酸/谷氨酸逆向转运蛋白)活性的改变有助于炎症(IL-1β 增强)缺氧神经元损伤(缺血半影模型)的发生和进展。尽管如此,新的初步数据表明,IL-1β 介导的同一分子(系统 xc-)的上调可以提供针对氧化损伤的保护。我们推测星形胶质细胞系统 xc- 的 IL-1β 上调可能已进化为一种保护机制,以对抗受损组织中的氧化应激。然而,这种增加在谷氨酸摄取受损的情况下变得适应不良,这种情况发生在我们的体外缺氧模型和体内中风的情况下。 IL-1beta 和系统 xc- 处于损伤和保护十字路口的概念特别有趣。研究系统地、实证地解决这些想法,并阐明
仅需要IL-1β在分子水平上对转运蛋白的调节。因此,接下来的5年研究计划的目标如下: 1) 确定IL-1beta调节星形胶质细胞系统xc-表达的机制。最先进的分子生物学方法将用于评估IL-1β是否在转录和/或转录后水平调节xCT mRNA,并鉴定负责诱导和/或稳定xCT信息的顺式和反式作用因子。 2) 确定增强的系统xc-活性的功能结果。该目的的目的是确定 IL-1β 介导的系统 xc 活性增强是否先验地增加 GSH 含量并在体外和体内谷氨酸摄取均有效的条件下赋予对氧化损伤的选择性抵抗力。 3) 使用遗传方法,将进行研究以确定脑缺血损伤后IL-1β信号传导调节系统xc表达的程度,直接问题是系统xc功能的丧失,无论是整体的,还是在星形胶质细胞中,是否会改变小鼠脑对脑缺血损伤的易感性。了解 IL-1beta 对系统 xc- 的调节是必要的,以便我们可以利用这些信息来设计策略来利用有益效果(即
增加 GSH 水平以减少氧化损伤),并在适当时采取策略降低其活性,以降低兴奋性毒性神经元损伤的可能性(即在谷氨酸吸收受损的情况下)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANDRA J HEWETT其他文献
SANDRA J HEWETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANDRA J HEWETT', 18)}}的其他基金
Investigating the role of system xc- in glutamate, glutathione and synapse homeostasis in vivo
研究系统 xc- 在体内谷氨酸、谷胱甘肽和突触稳态中的作用
- 批准号:
10214720 - 财政年份:2020
- 资助金额:
$ 35.14万 - 项目类别:
Investigating the role of system xc- in glutamate, glutathione and synapse homeostasis in vivo
研究系统 xc- 在体内谷氨酸、谷胱甘肽和突触稳态中的作用
- 批准号:
10357770 - 财政年份:2018
- 资助金额:
$ 35.14万 - 项目类别:
Investigating the role of system xc- in glutamate, glutathione and synapse homeostasis in vivo
研究系统 xc- 在体内谷氨酸、谷胱甘肽和突触稳态中的作用
- 批准号:
10116499 - 财政年份:2018
- 资助金额:
$ 35.14万 - 项目类别:
Constructing a Conditional Slc7a11 (xCT) Null Mouse
构建条件 Slc7a11 (xCT) 空鼠标
- 批准号:
8302237 - 财政年份:2011
- 资助金额:
$ 35.14万 - 项目类别:
Constructing a Conditional Slc7a11 (xCT) Null Mouse
构建条件 Slc7a11 (xCT) 空鼠标
- 批准号:
8203292 - 财政年份:2011
- 资助金额:
$ 35.14万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 35.14万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 35.14万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 35.14万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




