Multidimensional MRI-based Big Data Analytics to Study Osteoarthritis
基于多维 MRI 的大数据分析研究骨关节炎
基本信息
- 批准号:9385849
- 负责人:
- 金额:$ 9.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAtlasesAwardBig DataBiochemicalBiochemistryBiomechanicsBiomedical EngineeringCaliforniaCartilageChronologyClinicalComplexComputer Vision SystemsDataData AnalysesData AnalyticsData ScienceData SetDegenerative polyarthritisDevelopmentDevelopment PlansDiagnostic radiologic examinationDimensionsDisciplineDiseaseDisease ProgressionEarly DiagnosisElementsEtiologyEventExposure toFacultyGaitGeneticGenomicsGoalsHealthHumanHybridsImageImage AnalysisImageryInstitutesKneeKnee OsteoarthritisKnee jointKnowledgeLearningLesionLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMeasurementMedicalMedical ImagingMentorsModelingMorphologyMusculoskeletal SystemNatural HistoryOutcomePathogenesisPathway interactionsPatient Outcomes AssessmentsPhasePhenotypePositioning AttributePostdoctoral FellowRadiology SpecialtyRelaxationResearchResearch DesignResearch PersonnelRisk FactorsRoleSan FranciscoScanningSex CharacteristicsShapesSourceSpecialistStatistical Data InterpretationSymptomsSyndromeTechniquesThickTimeTissuesTrainingUniversitiesValidationVariantarthropathiesbasebioimagingbonecareer developmentcartilage degradationconnectomedata integrationdesignepidemiology studyexperienceimage processingimage registrationimaging Segmentationimaging biomarkerimaging scientistinterdisciplinary collaborationkinematicsmembermodifiable riskmorphometrymusculoskeletal imagingparallel processingprecision medicinequantitative imagingracial differencerepositoryshape analysissoft tissuethree-dimensional modelingtool
项目摘要
ABSTRACT
This project outlines technical medical image processing and machine learning developments to study the
pathogenesis and natural history of osteoarthritis (OA). In the past few years, the availability of public datasets
that collect data such as plain radiographs, MRI genomics and patients reported outcomes has allowed the
study of disease etiology, potential treatment pathways and predictors of long-range outcomes, showing an
increasingly important role of the MRI. Moreover, recent advances in quantitative MRI and medical image
processing allow for the extraction of extraordinarily rich arrays of heterogeneous information on the
musculoskeletal system, including cartilage and bone morphology, bone shape features, biomechanics, and
cartilage biochemical composition.
Osteoarthritis, being a polygenic and multifactorial disease characterized by several phenotypes,
seems the perfect candidate for multidimensional analysis and precision medicine. However, accomplish this
ambitious task, will require complex analytics and multifactorial data-integration from diverse assessments
spanning morphological, biochemical, and biomechanical features. In this project, we propose to fill this gap
developing automatic post-processing algorithms to examine cartilage biochemical compositional and
morphological features and to apply new multidimensional machine learning to study OA
This “Pathway to Independence” award application includes a mentored career development plan to
transition the candidate, Dr. Valentina Pedoia, into an independent investigator position, as well as an
accompanying research plan describing the proposed technical developments for the application of big data
analytics to the study of OA. The primary mentor, Dr. Sharmila Majumdar, is a leading expert in the field of
quantitative MRI for the study of OA, and the co-mentors, Dr. Adam Ferguson and Dr. Ramakrishna Akella,
have extensive experience in the application of machine learning and topological data analysis to big data. The
diversified plan of training and the complementary background of these mentors will allow the candidate to
develop a unique interdisciplinary profile in the field of musculoskeletal imaging.
The candidate, Dr. Valentina Pedoia, is currently in a post-doctoral level position (Associated
Specialist) at the University of California at San Francisco (UCSF), developing MR image post-processing
algorithms. The mentoring and career development plan will supplement her image processing background
with valuable exposure to machine learning, big data analysis, epidemiological study design, and
interdisciplinary collaboration to facilitate her transition to a medical imaging and data scientist independent
investigator position. Ultimately, she aims to become a faculty member in a radiology or bioengineering
institute, where she can further research technical biomedical imaging and machine learning developments
applied to the musculoskeletal system.
摘要
该项目概述了技术医学图像处理和机器学习的发展,以研究
骨关节炎的发病机制和自然病史。在过去的几年里,公共数据集的可用性
通过收集平片、核磁共振基因组学和患者报告的结果等数据,
对疾病病因、潜在治疗途径和长期结果预测因素的研究表明,
核磁共振的作用日益重要。此外,定量磁共振成像和医学图像的最新进展
处理允许提取非常丰富的异类信息阵列
肌肉骨骼系统,包括软骨和骨骼形态、骨骼形状特征、生物力学和
软骨生化成分。
骨关节炎是一种多基因、多因素的疾病,以几种表型为特征,
似乎是多维分析和精确医学的完美候选者。然而,要做到这一点
雄心勃勃的任务将需要复杂的分析和来自不同评估的多因素数据集成
具有形态、生化和生物力学特征。在这个项目中,我们建议填补这一空白
开发自动后处理算法来检测软骨的生化成分和
形态特征及多维机器学习在骨性关节炎研究中的应用
这项“独立之路”奖项申请包括一项有指导的职业发展计划,以
将候选人瓦伦蒂娜·佩多亚博士转变为独立调查员职位,以及
随附的研究计划描述了大数据应用方面的拟议技术发展
对办公自动化研究的分析。主要导师莎米拉·马琼达尔博士是该领域的领先专家
以及共同导师Adam Ferguson博士和Ramakrishna Akella博士,
在大数据的机器学习和拓扑数据分析应用方面有丰富的经验。这个
多样化的培训计划和这些导师的互补背景将使应聘者能够
在肌肉骨骼成像领域开发独特的跨学科配置文件。
候选人瓦伦蒂娜·佩多亚博士目前担任博士后职位(美联社
专家)在加州大学旧金山分校(UCSF)工作,开发MR图像后处理
算法。指导和职业发展计划将补充她的图像处理背景
对机器学习、大数据分析、流行病学研究设计和
跨学科协作,帮助她过渡到独立的医学成像和数据科学家
调查员位置。最终,她的目标是成为放射学或生物工程专业的教员。
在那里,她可以进一步研究生物医学成像和机器学习的技术发展
应用于肌肉骨骼系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valentina Pedoia其他文献
Valentina Pedoia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valentina Pedoia', 18)}}的其他基金
相似海外基金
BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
- 批准号:
23KF0076 - 财政年份:2023
- 资助金额:
$ 9.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
- 批准号:
10740308 - 财政年份:2023
- 资助金额:
$ 9.4万 - 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 9.4万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10743857 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10558629 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
- 批准号:
10508739 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
- 批准号:
RGPIN-2018-05283 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
- 批准号:
10364874 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 9.4万 - 项目类别:














{{item.name}}会员




