Optical Amplification Microscopy of Weak Back-Scattered Light
弱背散射光的光学放大显微镜
基本信息
- 批准号:9214154
- 负责人:
- 金额:$ 54.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersApoptosisBackBallisticsBasic ScienceBiologicalBiological ProcessCell Culture TechniquesCellsClinical ResearchComplexConfocal MicroscopyDataDetectionDevelopmentDiagnosticElectronicsEnvironmentEventFeasibility StudiesFluorescenceFutureGenerationsGoalsImageImaging technologyIn VitroLabelLifeLightMedicalMicroscopeMicroscopyModalityMolecularMultimodal ImagingMusNoiseOptical Coherence TomographyOpticsPerformancePhotonsPhysicsProcessResearchResolutionSamplingSensitivity and SpecificitySignal TransductionSkinSourceSpeedTechniquesTechnologyTissuesbasebioimagingcellular imagingclinical Diagnosisclinical applicationclinical investigationclinical practicecontrast imagingcostdetectorfascinateimaging modalityimaging systemimprovedin vivoin vivo imaginginsightinstrumentinstrumentationintravital imaginglight scatteringmicroscopic imagingmulti-photonnoveloptical imagingpractical applicationpre-clinicalsecond harmonictemporal measurementtwo-photon
项目摘要
SUMMARY
Optical imaging, which offers sufficient spatial resolution, specificity, sensitivity, and temporal resolution, has
provided substantial insights into important biological processes at the cellular and molecular levels. Although
high quality optical images can be obtained from in vitro cell cultures and/or thin tissue sections, intravital cell
imaging in a complex, three-dimensional living tissue environment remains quite challenging. Because biological
tissue naturally does not favor the propagation of light, and because of the inevitable presence of strong ambient
light in the environment, special challenges arise in virtually every in vivo biomedical optical imaging, namely
weak light signals and strong light backgrounds (including the multiply-scattered light in the tissue and the
environment light). These challenges have significantly limited the full application of optical imaging in in vivo
pre-clinical and clinical investigations. Currently, the detection of weak light signals for optical imaging relies
heavily on the use of highly sensitive electronic detectors and electronic amplifiers. Although high-end electronic
photo receivers are often very sensitive, the high sensitivity leads to the imaging systems being extremely prone
to random photon noise, such environmental background (room) light, which is problematic for practical
applications (e.g. in vivo studies and clinical practice). Furthermore, electronic detectors are incapable of
distinguishing image-bearing ballistic photons from the multiply-scattered light background, which as a
predominant source of noise in optical imaging of biological samples, can be overwhelming and significantly
degrade resolution when imaging microstructure deep in tissue.
In this proposed project, we will develop a multimodal microscope that utilizes a novel high speed optical
parametric amplifier (OPA) to optically amplify weak back-scattered light signals, and demonstrate its capabilities
by investigating in vivo cellular apoptosis events in murine skin. As shown by our preliminary data, the OPA will
not only provide a high level of signal gain to improve detection sensitivity, but also provide an inherent nonlinear
optical gate to both extract imaging-bearing signals and reject the noise sources from environmental photons
and multiply-scattered background light. We will systematically explore the benefits afforded by this OPA for
multimodal imaging that will include label-free reflectance confocal microscopy and optical coherence
tomography. Improvement in resolution, contrast, imaging depth, and reduced photo-damage, will be
investigated. The successful completion of this project will demonstrate a high-speed, robust, optical intravital
microscope that combines multiple modalities with enhanced performance and new fascinating imaging functions
uniquely enabled by the OPA. This intravital microscope will not only enable new biological and clinical studies,
but also promote the development of new optical imaging technologies based on optical amplifiers.
总结
光学成像提供了足够的空间分辨率、特异性、灵敏度和时间分辨率,
在细胞和分子水平上对重要的生物学过程提供了实质性的见解。虽然
可以从体外细胞培养物和/或薄组织切片、活体细胞
在复杂的三维活体组织环境中成像仍然是相当具有挑战性的。因为生物
组织自然地不有利于光的传播,并且由于不可避免地存在强环境光,
光在环境中,特殊的挑战出现在几乎每一个体内生物医学光学成像,即
弱光信号和强光背景(包括组织中的多次散射光和
环境光)。这些挑战极大地限制了光学成像在体内的全面应用
临床前和临床研究。目前,用于光学成像的弱光信号的检测依赖于
主要依靠使用高灵敏度的电子探测器和电子放大器。虽然高端电子
光接收器通常非常灵敏,高灵敏度导致成像系统非常容易
随机光子噪声,例如环境背景(房间)光,这对于实际应用是有问题的。
应用(例如体内研究和临床实践)。此外,电子探测器无法
将承载图像的弹道光子与多次散射光背景区分开,
生物样品的光学成像中的主要噪声源,可以是压倒性的和显著的
当对组织深处的微结构进行成像时,会降低分辨率。
在这个拟议的项目中,我们将开发一种多模态显微镜,利用一种新型的高速光学
参量放大器(OPA)光学放大微弱的反向散射光信号,并展示其能力
通过研究小鼠皮肤中的体内细胞凋亡事件。根据我们的初步数据,OPA将
不仅提供高水平的信号增益以提高检测灵敏度,而且提供固有的非线性
光学门,用于提取承载成像的信号并拒绝来自环境光子的噪声源
和多重散射的背景光。我们会有系统地探讨这项外地加工措施所带来的好处,
多模式成像,包括无标记反射共焦显微镜和光学相干
断层扫描分辨率、对比度、成像深度的改进以及减少的光损伤将是
研究了该项目的成功完成将展示一种高速,稳健,光学活体
显微镜结合了多种模式,具有增强的性能和新的迷人的成像功能
由外行星联盟独家授权这种活体显微镜不仅可以进行新的生物学和临床研究,
也促进了基于光放大器的新型光学成像技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen A Boppart其他文献
Stephen A Boppart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen A Boppart', 18)}}的其他基金
Quantitative in-vivo and clinical imaging (Boppart)
定量体内和临床成像 (Boppart)
- 批准号:
10705172 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
The Center for Label-free Imagingand Multiscale Biophotonics (CLIMB)
无标记成像和多尺度生物光子学中心 (CLIMB)
- 批准号:
10705169 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Center for Label-free Imaging and Multiscale Biophotonics (CLIMB)
无标记成像和多尺度生物光子学中心 (CLIMB)
- 批准号:
10705138 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Bridge to the Doctorate at University of Illinois at Urbana-Champaign
通往伊利诺伊大学厄巴纳-香槟分校博士学位的桥梁
- 批准号:
10269337 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Bridge to the Doctorate at University of Illinois at Urbana-Champaign
通往伊利诺伊大学厄巴纳-香槟分校博士学位的桥梁
- 批准号:
10445299 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Bridge to the Doctorate at University of Illinois at Urbana-Champaign
通往伊利诺伊大学厄巴纳-香槟分校博士学位的桥梁
- 批准号:
10666487 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
A Snapshot Adaptive Optics and Hyperspectral Autofluorescence Fundus Camera for Age-Related Macular Degeneration (AMD)
用于年龄相关性黄斑变性 (AMD) 的快照自适应光学和高光谱自发荧光眼底相机
- 批准号:
10372168 - 财政年份:2020
- 资助金额:
$ 54.71万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Collaborative R&D