Brain-spanning and scale-crossing circuitry mediating drive function and dysfunction
介导驱动功能和功能障碍的脑跨度和跨尺度电路
基本信息
- 批准号:10310507
- 负责人:
- 金额:$ 73.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnhedoniaAnimalsAnorexia NervosaAutomobile DrivingBackBehaviorBehavior ControlBehavioralBehavioral ParadigmBrainBrain DiseasesCellsComplexConflict (Psychology)Consummatory BehaviorDesire for foodDevelopmentDiseaseElectric StimulationElectrophysiology (science)EtiologyFoodFoundationsFunctional disorderGoalsHumanHungerImageImpairmentInterventionLaboratory AnimalsLesionLightLiteratureMajor Depressive DisorderMammalsMapsMediatingMedicalMental DepressionMental HealthMental disordersMethodsModelingModernizationMolecularMotivationMusNatureNeuronsOrganismPathologicPatternProcessPropertyRegulationResearchResolutionRewardsSatiationSchizophreniaScienceSocial EnvironmentSpeedStrokeSymptomsTechnologyTestingThirstTimeTissuesWaterWorkadjudicatebasecell typecellular targetingclinical applicationclinically significantconflict resolutiondesigndrinking waterexperiencefeedinghedonicinsightinterestneural circuitneuropsychiatric disordernew technologynoveloptical imagingoptogeneticspsychiatric symptomsocialtranscriptomicsvirtual
项目摘要
This proposal is designed to provide circuit-dynamics understanding of anhedonia, a psychiatric symptom
domain of enormous clinical significance that is well-suited for study in laboratory animals. This work,
alongside our recently-developed methods for obtaining brainwide cellular-resolution activity readout and
control, has created a powerful and fortuitous alignment enabling us to bridge local and global neuronal
dynamics, and to identify brain-spanning circuitry mediating behavioral drives, conflicts, and resolutions.
In Aim 1, we identify single-cell-resolved orbitofrontal (OFC) dynamics underlying distinct consummatory
behaviors. We have developed a temporally-precise alternative-choice mouse-behavioral paradigm, crucially
designed for compatibility with our wide-field cellular-resolution imaging/recording methods, in which mice
select among multiple motivational drives, and adjust action planning in light of internal or external context.
We apply this paradigm along with our cellular-resolution readouts and analyses, beginning with addressing
both hunger and thirst in OFC. We identify dynamics of motivational drive resolution both in the presence or
absence of controlled internal states, and in the presence or absence of external (social) context, using our new
methods; we hypothesize from prior work (Jennings et al., Nature 2019) that resolution of these conflicts will
depend upon not only the motivational (internal) state of the animal but also the external context.
In Aim 2, we map causal global dynamics of motivational drive conflict and resolution, quantifying the
high-speed cellular-resolution brainwide circuit dynamics underlying these motivational drive interactions
(drives naturally-occurring; or, to leverage our fast electrophysiological readout, instead induced in temporally-
precise fashion by optogenetically driving AGRP neurons in the case of hunger, and/or SFO inputs to the
MnPO in the case of thirst, using our established models and methods; Allen et al., Science 2019; Jennings et
al., Nature 2019; Marshel et al., Science 2019). Identification of novel region-specific dynamics in conditions of
varying motivational drive and social context will feed back to inform Aim 1 imaging workflow, already with a
firm foundation from our prior work imaging OFC states corresponding to social and thirst drive interaction.
In Aim 3, we define cells underlying inter-drive competition and corresponding brainwide dynamics.
Multiple single cells identified by natural activity will be optogenetically targeted with our unique wide-field
and high-resolution spatial light-guidance technology. We register cellular ensembles observed to be naturally
and causally involved, to detailed 3D intact-tissue (STARmap) transcriptomic information from the same cells
in the same organism. Alignment with wiring-based anatomy and deep molecular datastreams allow cell-type-
resolved and single cell-level insight into, and targeting of, survival drive competition and resolution processes,
with both basic significance and relevance to brain disease. Together, the approaches proposed here will
integrate novel technology to probe causal underpinnings of key symptom domains in freely-moving mammals.
这项建议旨在提供电路动力学的快感缺乏,精神症状的理解
具有巨大临床意义的领域,非常适合在实验室动物中进行研究。这项工作,
除了我们最近开发的用于获得全脑细胞分辨率活动读出的方法,
控制,创造了一个强大的和偶然的对齐,使我们能够连接本地和全球神经元
动态,并确定跨脑电路介导的行为驱动器,冲突和决议。
在目标1中,我们确定了不同的完善性基础上的单细胞分辨眶额(OFC)动力学,
行为。我们已经开发出一种时间精确的替代选择老鼠行为模式,
设计与我们的宽视场细胞分辨率成像/记录方法兼容,其中小鼠
在多种动机驱动中进行选择,并根据内部或外部环境调整行动计划。
我们将这种范例沿着我们的细胞分辨率读数和分析,从寻址开始,
在眶额皮层中饥渴难耐我们确定了动机驱动力解决的动力学,
缺乏控制的内部状态,并在存在或不存在外部(社会)背景下,使用我们的新
方法;我们从先前的工作中假设(Jennings等人,《自然》杂志2019年报道,解决这些冲突将
这不仅取决于动物的动机(内部)状态,还取决于外部环境。
在目标2中,我们绘制了动机驱动冲突和解决的因果全球动态图,量化了
这些动机驱动相互作用背后的高速细胞分辨率脑回路动力学
(驱动自然发生;或者,为了利用我们的快速电生理读数,而是在时间上诱导-
在饥饿的情况下,通过光遗传学驱动AGRP神经元,和/或SFO输入到
MnPO在口渴的情况下,使用我们建立的模型和方法;艾伦等人,Science 2019; Jennings et
例如,Nature 2019; Marshel等人,Science 2019)。识别新的区域特定的动力学条件下,
不同的动机驱动和社会背景将反馈给Aim 1成像工作流程,
从我们先前的工作中获得了与社交和口渴驱动相互作用相对应的OFC状态成像的坚实基础。
在目标3中,我们定义了驱动间竞争和相应的全脑动力学的基础细胞。
通过天然活性鉴定的多个单细胞将用我们独特的宽视野靶向光遗传学。
和高分辨率空间光引导技术。我们观察到的细胞系
和因果关系,从相同的细胞详细的三维完整组织(STARmap)转录组学信息
在同一个有机体中。与基于解剖学的解剖学和深层分子数据流的比对允许细胞类型-
解决和单细胞水平的洞察力,并针对,生存驱动竞争和解决过程,
对脑部疾病有着重要的意义和相关性。总之,这里提出的方法将
整合新技术,探索自由移动哺乳动物关键症状域的因果基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl A. Deisseroth其他文献
Karl A. Deisseroth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl A. Deisseroth', 18)}}的其他基金
An optical-genetic toolbox for monitoring and controlling diverse neuromodulatory circuits governing complex behaviors in primates
用于监测和控制灵长类动物复杂行为的多种神经调节回路的光遗传工具箱
- 批准号:
10650669 - 财政年份:2023
- 资助金额:
$ 73.46万 - 项目类别:
Interaction of external inputs with internal dynamics: influence of brain states on neural computation and behavior
外部输入与内部动态的相互作用:大脑状态对神经计算和行为的影响
- 批准号:
10698364 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
Interaction of external inputs with internal dynamics: influence of brain states on neural computation and behavior
外部输入与内部动态的相互作用:大脑状态对神经计算和行为的影响
- 批准号:
10047726 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
Research Project 1 - Developing and applying tools to probe internal state dynamics of perception and motivation
研究项目 1 - 开发和应用工具来探测感知和动机的内部状态动态
- 批准号:
10490239 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
Research Project 1 - Developing and applying tools to probe internal state dynamics of perception and motivation
研究项目 1 - 开发和应用工具来探测感知和动机的内部状态动态
- 批准号:
10687144 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
Interaction of external inputs with internal dynamics: influence of brain states on neural computation and behavior
外部输入与内部动态的相互作用:大脑状态对神经计算和行为的影响
- 批准号:
10687134 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
Research Project 1 - Developing and applying tools to probe internal state dynamics of perception and motivation
研究项目 1 - 开发和应用工具来探测感知和动机的内部状态动态
- 批准号:
10047732 - 财政年份:2021
- 资助金额:
$ 73.46万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 73.46万 - 项目类别:
Research Grant