Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
基本信息
- 批准号:9474648
- 负责人:
- 金额:$ 68.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAmyloidAmyloidosisBacteriaBiochemicalBloodCellsDiseaseDissociationEnterobacteriaceaeEukaryotaExposure toGoalsHost DefenseHypochlorous AcidInsectaLeishmania infantumMammalsMicrobial BiofilmsMitochondriaMolecular ChaperonesMolecular ConformationMutationNeurodegenerative DisordersNeuronsOrganismOxidation-ReductionParasitesParkinson DiseasePathway interactionsPhysiologicalPlayPolymersPolyphosphatesPolypsProcessProteinsResearchResistanceResolutionRoleSiteStomachStressSuggestionSystemTemperatureTestingTimeToxic effectWorkYeastsacid stressamyloid formationanalogantimicrobialbeta pleated sheetbiological adaptation to stressdisulfide bondflexibilityimprovednovelpathogenic bacteriaprotein foldingprotein protein interactionproteotoxicityscaffoldthermostabilitytool
项目摘要
Many organisms regularly encounter fast-acting, highly proteotoxic stress conditions, including exposure to the
physiological antimicrobial hypochlorous acid (HOCl), highly elevated temperatures or acid stress. To survive
these stress conditions, they employ a class of ATP-independent, stress specific chaperones, whose
posttranslational activation is tailored towards the stress conditions that require their chaperone functions. Our
lab investigates four of these stress-specific chaperones; Hsp33, which is activated by oxidative disulfide bond
formation to protect bacteria and eukaryotic parasites against HOCl, which is commonly produced by cells of
the innate host defense; Get3, a redox-regulated Hsp33 analogue that protects yeast and likely other
eukaryotes against oxidative protein damage; HdeA, which is rapidly activated by acid-induced dissociation
and protects enteric bacteria against acid-stress encountered in the mammalian stomach; and mitochondrial
Prdx2 from Leishmania infantum, which is a temperature-regulated chaperone that protects parasites against
the sudden temperature shift as they transit from insects to warm-blooded mammals. All four of these proteins
are chaperone-inactive and stably folded under non-stress conditions but are activated following very rapid,
stress-induced conformational rearrangements, converting them into proteins with extensive regions of intrinsic
disorder. We will now combine mutational, biochemical and high-resolution structural tools to elucidate the
precise working mechanism of these proteins, testing the hypothesis that stress-induced unfolding serves to
generate novel, highly flexible protein-protein interaction sites. These studies have the potential to open up a
completely new perspective in chaperone research, protein folding and stress response pathways. In a
separate line of research, we discovered that polyphosphate (polyP), which is a universally conserved, very
abundant and ubiquitously distributed polymer, works as a highly effective protein-stabilizing scaffold. This
demonstrates that protein chaperones are not the only cellular solution to deal with proteotoxic stress
conditions. We found that polyP increases the thermostability of proteins by stabilizing them in a
predominantly β-sheet conformation. This finding helps to explain how polyP confers resistance to stress
conditions that cause protein unfolding. At the same time, it also explains how polyP acts to accelerate
processes such as bacterial biofilm formation, which depend on the stabilization of amyloid-like proteins in a
fibril-forming cross-β-sheet conformation. We recently realized that polyP equally accelerates fibril formation of
disease-associated amyloids. This activity appears to reduce the amount of toxic oligomers and, most
importantly, protects neurons against amyloid toxicity. We will now further investigate this exciting suggestion
that polyP is a physiologically important cytoprotective modifier of amyloidogenic processes, and might play a
role in Parkinson's disease and potentially other neurodegenerative diseases associated with amyloid
formation.
许多生物体经常遇到快速作用的高蛋白毒性应激条件,包括暴露于
生理抗微生物次氯酸(HOCl)、高度升高的温度或酸胁迫。生存
在这些应激条件下,它们采用一类ATP-非依赖性的应激特异性分子伴侣,其
翻译后激活是针对需要其伴侣蛋白功能的应激条件而定制的。我们
一个实验室研究了其中四种应激特异性分子伴侣:Hsp 33,它被氧化二硫键激活
形成保护细菌和真核寄生虫免受HOCl,HOCl通常由细胞产生,
先天宿主防御; Get 3,一种氧化还原调节的Hsp 33类似物,可保护酵母和其他可能的宿主。
抗氧化蛋白损伤的真核生物; HdeA,可通过酸诱导解离快速激活
并保护肠道细菌免受哺乳动物胃中遇到的酸应激;
Prdx 2来自婴儿利什曼原虫,这是一种温度调节的伴侣蛋白,可保护寄生虫免受
从昆虫转变为温血哺乳动物时温度的突然变化。这四种蛋白质
在非应激条件下是无伴侣活性的和稳定折叠的,
应激诱导的构象重排,将其转化为具有广泛的内在结构区域的蛋白质。
disorder.我们现在将结合联合收割机突变,生化和高分辨率结构工具来阐明
这些蛋白质的精确工作机制,测试假设,应力诱导的展开服务于
产生新的、高度灵活的蛋白质-蛋白质相互作用位点。这些研究有可能开辟一个
在分子伴侣研究、蛋白质折叠和应激反应途径方面的全新视角。中
我们发现,聚磷酸盐(polyP),这是一个普遍保守的,非常
丰富和无处不在的聚合物,作为一种高效的蛋白质稳定支架。这
表明蛋白伴侣不是处理蛋白毒性应激的唯一细胞解决方案
条件我们发现polyP通过将蛋白质稳定在一个合适的温度来增加蛋白质的热稳定性。
主要是β折叠构象。这一发现有助于解释polyP如何赋予抗压力能力
导致蛋白质解折叠的条件。同时,它还解释了polyP如何加速
过程,如细菌生物膜的形成,这取决于淀粉样蛋白的稳定性,
纤维形成交叉β-折叠构象。我们最近意识到,聚P同样加速了纤维的形成。
疾病相关的淀粉样蛋白这种活性似乎减少了有毒低聚物的量,
重要的是,保护神经元免受淀粉样蛋白毒性。我们现在将进一步研究这个令人兴奋的建议
聚P是淀粉样蛋白形成过程中生理学上重要的细胞保护性修饰剂,
在帕金森病和其他可能与淀粉样蛋白相关的神经退行性疾病中的作用
阵
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ursula H. Jakob其他文献
Ursula H. Jakob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ursula H. Jakob', 18)}}的其他基金
Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
- 批准号:
10683390 - 财政年份:2022
- 资助金额:
$ 68.56万 - 项目类别:
Linking Histone Modifications, HSF-1 activity and Lifespan
连接组蛋白修饰、HSF-1 活性和寿命
- 批准号:
10508860 - 财政年份:2022
- 资助金额:
$ 68.56万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
9925819 - 财政年份:2017
- 资助金额:
$ 68.56万 - 项目类别:
Role of Molecular Chaperones in Stress Response and Disease
分子伴侣在应激反应和疾病中的作用
- 批准号:
10159934 - 财政年份:2017
- 资助金额:
$ 68.56万 - 项目类别:
2015 Stress Proteins in Growth, Development and Disease GRC
2015 生长、发育和疾病 GRC 中的应激蛋白
- 批准号:
8976890 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
8987288 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Polyphosphate - A Novel Member of the Proteostasis Network
多磷酸盐 - 蛋白质稳态网络的新成员
- 批准号:
9118242 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Investigation of developmental peroxide generation as an important lifespan-deter
发育性过氧化物生成作为重要的寿命阻止因素的研究
- 批准号:
8716042 - 财政年份:2014
- 资助金额:
$ 68.56万 - 项目类别:
相似国自然基金
基于聚金属氧酸盐对Amyloid蛋白的定点化学修饰及其在阿尔茨海默症治疗中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于S1P通路探究Amyloid-β在干性年龄相关性黄斑变性中的作用
- 批准号:81870666
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Amyloid-beta-PirB 相互作用介导小胶质细胞表型和功能变化参与AD进展的机制研究
- 批准号:81601123
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Beta-amyloid寡聚体特有的抗原表位多肽疫苗的研究
- 批准号:30971012
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
抗阿兹海默病Beta-Amyloid寡聚物单链可变区抗体的筛选及其动物试验
- 批准号:30570622
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
The disease of 21 century: Development of a novel therapy for ATTR amyloidosis based on the pathogenesis of amyloid formation mechanism
21世纪的疾病:基于淀粉样蛋白形成机制的ATTR淀粉样变性新疗法的开发
- 批准号:
22K07528 - 财政年份:2022
- 资助金额:
$ 68.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amyloid Transcription Block Survival - Deriving Functionally Active Peptide Inhibitors of Amyloidosis and Toxicity
淀粉样蛋白转录阻断存活 - 衍生淀粉样变性和毒性的功能活性肽抑制剂
- 批准号:
2605106 - 财政年份:2021
- 资助金额:
$ 68.56万 - 项目类别:
Studentship
Amyloid Transcription Block Survival - Deriving Functionally Active Peptide Inhibitors of Amyloidosis and Toxicity
淀粉样蛋白转录阻断存活 - 衍生淀粉样变性和毒性的功能活性肽抑制剂
- 批准号:
2598875 - 财政年份:2021
- 资助金额:
$ 68.56万 - 项目类别:
Studentship
Analysis of cerebral amyloid angiopathy in hereditary ATTR amyloidosis
遗传性ATTR淀粉样变性脑淀粉样血管病分析
- 批准号:
21K15701 - 财政年份:2021
- 资助金额:
$ 68.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of novel therapy for cardiac amyloidosis by identifying transthyretin-derived amyloid fibril deposition promoting factor
通过鉴定转甲状腺素蛋白衍生的淀粉样原纤维沉积促进因子开发心脏淀粉样变性的新疗法
- 批准号:
19K08493 - 财政年份:2019
- 资助金额:
$ 68.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the transmission of avian AA amyloidosis mediated by amyloid in the environment
淀粉样蛋白介导的禽类AA淀粉样变性在环境中的传播研究
- 批准号:
17K17702 - 财政年份:2017
- 资助金额:
$ 68.56万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Establishing Strategies to Ameliorate Amyloid Pathology in Light Chain Amyloidosis
制定改善轻链淀粉样变性淀粉样蛋白病理学的策略
- 批准号:
10677553 - 财政年份:2016
- 资助金额:
$ 68.56万 - 项目类别:
Establishing Strategies to Ameliorate Amyloid Pathology in Light Chain Amyloidosis
制定改善轻链淀粉样变性淀粉样蛋白病理学的策略
- 批准号:
9270017 - 财政年份:2016
- 资助金额:
$ 68.56万 - 项目类别:
Establishing Strategies to Ameliorate Amyloid Pathology in Light Chain Amyloidosis
制定改善轻链淀粉样变性淀粉样蛋白病理学的策略
- 批准号:
10057800 - 财政年份:2016
- 资助金额:
$ 68.56万 - 项目类别:
Establishing Strategies to Ameliorate Amyloid Pathology in Light Chain Amyloidosis
制定改善轻链淀粉样变性淀粉样蛋白病理学的策略
- 批准号:
9104759 - 财政年份:2016
- 资助金额:
$ 68.56万 - 项目类别:














{{item.name}}会员




