Point-of-care cellular and molecular pathology of breast tumors on a cell phone
在手机上进行乳腺肿瘤的护理点细胞和分子病理学
基本信息
- 批准号:10358633
- 负责人:
- 金额:$ 60.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAfricaAntibodiesAutomobile DrivingBiological AssayBiological MarkersBreastBreast Cancer CellBreast Cancer PatientBreast Cancer TreatmentBreast biopsyCancer EtiologyCaringCellsCellular MorphologyCellular PhoneCessation of lifeClinicalClinical ResearchClinical TrialsComputer softwareCore BiopsyCountryCytologyCytopathologyDataDevelopmentDevice or Instrument DevelopmentDevicesDiagnosisDiagnosticEpidermal Growth Factor ReceptorEstrogen ReceptorsEvaluationFine needle aspiration biopsyGoldHealth PersonnelHealth Services AccessibilityHistologyHistopathologyHumanImageImaging DeviceImmunodiagnosticsImmunohistochemistryInfrastructureInterventionLifeMalignant NeoplasmsMammary NeoplasmsMeasuresMedical centerMethodsModificationMolecularMolecular ProfilingMusNeedlesNorth CarolinaOperative Surgical ProceduresOutcomePathologicPathological StagingPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePersonsPhasePilot ProjectsPopulationProgesterone ReceptorsPrognosisResearchResearch PersonnelResource-limited settingResourcesSamplingSavingsSensitivity and SpecificityServicesSpecimenTanzaniaTechnologyTelemedicineTestingTimeTrainingTraining and InfrastructureTranslatingTranslationsTumor MarkersTumor SubtypeUniversitiesValidationVisitWomanaccurate diagnosisalgorithm trainingbasebreast cancer diagnosisbreast cancer survivalbreast pathologycancer cellcancer diagnosiscancer subtypescellular imagingcellular pathologyclinical investigationclinically relevantcloud platformcostdata repositorydisorder subtypeimprovedimproved outcomeindustry partnerinnovationmachine learning algorithmmalignant breast neoplasmmobile computingmolecular markermolecular pathologymortalitypoint of carepoint of care testingpre-clinicalpreclinical studyprotein biomarkersprototyperapid diagnosisresponsesmartphone Applicationsubtype-specific therapiestreatment planningtumorusabilityuser-friendlyvirtualwireless
项目摘要
ABSTRACT
Breast cancer (BC) is the most common cancer among women and is the leading cause of cancer death in
women worldwide, with 1.6 million new cases and 500,000 BC deaths annually. Patients diagnosed in low-
resource settings (LRS) account for half of new cases, and the majority of deaths from BC worldwide. The first
critical step to starting life-saving treatment for BC is the accurate and timely pathologic confirmation of a cancer
diagnosis, a task which remains challenging in many LRS. Traditional pathology assessment involves processing
surgically excised specimens with cell-block methods for: (1) cellular histopathology, which identifies abnormal
cellular morphologies indicative of malignancy, and (2) molecular pathology, which identifies tumor biomarkers,
specifically estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2
(HER2), and the proliferation maker Ki67. Breast cancer subtyping using these markers is essential for
determining prognosis, as well as for selecting subtype-specific therapies. Unfortunately, histology-based
pathology services require a strong pathology infrastructure and trained pathologists, limiting access to these
services in many LRS. For example, there are only 15 trained pathologists in Tanzania, a country of over 55
million people. There is hence an urgent need for new methods to accurately diagnose cancer, as well as to
analyze expression levels of molecular biomarkers for tumor subtyping. A technology driven solution that could
automate cellular pathology with minimal user-intervention and virtually no infrastructure requirements could thus
enormously impact the management of breast cancer in LRS. Motivated by this need, the objective of this
proposal is to finalize the development of the EpiView-D4 point-of-care test (POCT) to analyze both the cellular
and molecular features of breast cancer from needle aspiration specimens. The EpiView component of the
device enables easily accessible, low-cost, smart-phone based brightfield cellular imaging of fine needle aspirate
breast biopsies without the need for pathologist assessment. In parallel, the D4 POCT component of the device
images a point-of-care antibody microarray for the quantification of ER/PR/Her2/Ki67 levels from breast FNA
lysate with picomolar sensitivity within 30 minutes at point-of-care, eliminating the need for additional visits before
a treatment plan can be initiated. The EpiView-D4 will enable automated readout of both cytopathology and the
molecular profiles of breast cancer, using machine learning algorithms integrated into a smartphone application.
In this proposal, we will conduct final device development and training of ML algorithms, followed by pre-clinical
validation and clinical investigation of the Epiview-D4 POCT, first at Duke University Medical Center, and then
in the intended LRS of Kilimanjaro Christian Medical Center. The impact of this technology lies in its potential to
dramatically improve breast cancer management worldwide by enabling rapid and accurate diagnosis and
subtyping of breast cancers, thereby driving timely and appropriate treatment for breast cancer patients and
hence improving the outcomes for hundreds of thousands of women with BC annually in LRS.
抽象的
乳腺癌(BC)是女性中最常见的癌症,是癌症死亡的主要原因
全球妇女,每年有160万例新病例和50万公元前的死亡。在低 -
资源环境(LRS)占了新病例的一半,以及卑诗省全球的大多数死亡。第一个
开始为BC开始挽救生命治疗的关键步骤是癌症的准确,及时的病理证实
诊断,这项任务在许多LR中仍然具有挑战性。传统病理评估涉及处理
通过细胞块方法进行外科手术切除的标本:(1)细胞组织病理学,鉴定出异常
细胞形态指示恶性肿瘤,(2)鉴定肿瘤生物标志物的分子病理学
特异性雌激素受体(ER),孕酮受体(PR),人表皮生长因子受体-2
(HER2)和扩散制造商KI67。使用这些标记的乳腺癌亚型对于
确定预后以及选择亚型特异性疗法。不幸的是,基于组织学
病理服务需要强大的病理基础设施和受过训练的病理学家,从而限制了对这些的机会
许多LRS的服务。例如,坦桑尼亚只有15位训练有素的病理学家,一个超过55个国家
百万人。因此,迫切需要新方法准确诊断癌症以及
分析分子生物标志物的表达水平以进行肿瘤亚型。技术驱动的解决方案
自动化细胞病理学的用户干预最少,几乎没有基础设施要求
极大地影响了LRS乳腺癌的治疗。由此需要的动机,目的
提案是最终确定ePiview-d4护理测试(POCT)的开发,以分析两个细胞
和针样标本的乳腺癌的分子特征。景观组件
设备启用易于访问的,低成本的基于智能手机的明亮菲尔德蜂窝蜂窝图像。
乳房活检无需病理学家评估。同时,设备的D4 POCT组件
图像从乳房FNA定量ER/PR/PR/PR/HER2/KI67水平的护理抗体微阵列
裂解物具有皮摩尔敏感性在30分钟内的裂解液,从而消除了需要额外访问的需求
可以启动治疗计划。 Epiview-D4将使细胞病理学和
使用机器学习算法集成到智能手机应用程序中的乳腺癌的分子谱。
在此提案中,我们将对ML算法进行最终设备开发和培训,然后进行临床前
Epiview-D4 POCT的验证和临床调查,首先在杜克大学医学中心,然后
在乞力马扎罗基督教医疗中心的预期LRS中。这项技术的影响在于它的潜力
通过实现快速准确的诊断和
乳腺癌的亚型,从而及时驾驶适当的乳腺癌患者治疗
因此,在LRS中,每年有数十万名BC的女性改善结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashutosh Chilkoti其他文献
Ashutosh Chilkoti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashutosh Chilkoti', 18)}}的其他基金
Development, Clinical Validation, and Readiness for Implementation of a Novel Mp1p D4 Poin Diagnosis of Talaromycosist of Care Test for Rapid
新型 Mp1p D4 点诊断踝部真菌护理测试的开发、临床验证和准备实施
- 批准号:
10700281 - 财政年份:2023
- 资助金额:
$ 60.29万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10417262 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10297706 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别:
Multiplex point-of-care test for diagnosis, prognosis and serology of COVID19
用于 COVID19 诊断、预后和血清学的多重即时检测
- 批准号:
10641013 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别:
Injectable PEG-like Conjugate for Sustained Delivery of a Peptide Drug for Type 2 Diabetes Treatment
用于持续递送肽药物治疗 2 型糖尿病的可注射 PEG 样缀合物
- 批准号:
10314066 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
Injectable PEG-like Conjugate for Sustained Delivery of a Peptide Drug for Type 2 Diabetes Treatment
用于持续递送肽药物治疗 2 型糖尿病的可注射 PEG 样缀合物
- 批准号:
10520019 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10269019 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10468131 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
A Fully Integrated Point-of-Care Test for Ebola
完全集成的埃博拉即时护理测试
- 批准号:
10119782 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
Point-of-care cellular and molecular pathology of breast tumors on a cell phone
在手机上进行乳腺肿瘤的护理点细胞和分子病理学
- 批准号:
10586029 - 财政年份:2020
- 资助金额:
$ 60.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Vanderbilt-Nigeria Biostatistics Training Program (VN-BioStat)
范德比尔特-尼日利亚生物统计学培训计划(VN-BioStat)
- 批准号:
10594548 - 财政年份:2022
- 资助金额:
$ 60.29万 - 项目类别:
Vanderbilt-Nigeria Biostatistics Training Program (VN-BioStat)
范德比尔特-尼日利亚生物统计学培训计划(VN-BioStat)
- 批准号:
10470510 - 财政年份:2022
- 资助金额:
$ 60.29万 - 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
- 批准号:
10279946 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
- 批准号:
10654812 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别:
MADIVA (Multimorbidity in Africa: Digital innovation, visualisation and application)
MADIVA(非洲的多发病:数字创新、可视化和应用)
- 批准号:
10658989 - 财政年份:2021
- 资助金额:
$ 60.29万 - 项目类别: