Understanding Metabolic Reprogramming in Platinum Resistant Ovarian Cancer
了解铂类耐药卵巢癌的代谢重编程
基本信息
- 批准号:10485428
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAwardBiological AssayBiological MarkersBreast Cancer CellCancer PatientCarbonCause of DeathCell DeathCell Death InductionCell LineCellsCellular biologyCessation of lifeChemicalsChemoresistanceClinicalClinical ManagementCollaborationsCollecting CellColorectal CancerConsumptionDNA DamageDNA Repair PathwayDataDependenceDevelopmentDiagnosisDisease ProgressionDisease ResistanceDisease remissionEnergy-Generating ResourcesEnzymesFatal OutcomeFatty AcidsFatty-acid synthaseFluorescenceGenerationsGeneticGlucoseGlutamineGlutathioneGlycolysisGoalsHumanImageImaging DeviceImaging TechniquesImmunocompetentImmunotherapyInduction of ApoptosisLipid PeroxidationLipidsMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMeasurementMeasuresMediatingMembrane LipidsMembrane Transport ProteinsMetabolicMetabolismMethodsModelingMolecularMolecular and Cellular BiologyMonitorMultiomic DataMusOrganoidsOvarianOvarian Serous AdenocarcinomaOxidative StressPathway interactionsPatientsPeroxidesPhenotypePlatinumPre-Clinical ModelPredispositionProcessReactive Oxygen SpeciesRecurrenceRecurrent Malignant NeoplasmRecurrent diseaseReportingResearch PersonnelResistanceResource SharingResourcesSamplingSerousSystems BiologyTechnologyTestingTherapeuticTreatment EfficacyTumor DebulkingUnsaturated Fatty AcidsWomanWorkbiomarker drivencancer cellcancer recurrencecancer stem cellchemotherapyclinical developmentclinically relevantdesaturasedigitalfatty acid oxidationimaging modalityindexinginhibitorkinase inhibitorlipid biosynthesislipidomicsmetabolic abnormality assessmentmetabolic imagingmolecular imagingmouse modelmultidisciplinarymultimodalityneoplastic cellnew therapeutic targetnovelnovel strategiesnovel therapeutic interventionovarian neoplasmoxaliplatinoxidized lipidpatient derived xenograft modelpre-clinicalpreventprognostic assaysrefractory cancerresponsesmall moleculespectroscopic imagingstandard caretargeted agenttargeted treatmenttherapeutic biomarkertherapy resistanttranscriptomicstreatment strategytumortwo-photon
项目摘要
PROJECT SUMMARY
This Collaborative Merit Award application (CMA), consisting of three projects (CMA1-3), addresses a critical
challenge in the clinical management of ovarian cancer. The most common and most lethal subtype of ovarian
cancer is high-grade serous ovarian carcinoma (HGSOC). Standard treatment for HGSOC combines surgical
cytoreduction with platinum-based chemotherapy. The treatment is initially successful in achieving remission.
However, cancer recurs in most women. Patients with recurrent disease may continue to respond to additional
rounds of platinum but will ultimately develop platinum resistance (PtR). At that point, the tumor is typically
resistant to other treatment strategies. The key to increasing survival in HGSOC is to prevent the development
of PtR or identify alternative means of targeting resistant tumors. The main goal of this interdisciplinary and
collaborative project is to identify novel targets and biomarkers of therapeutic efficacy for HGSOC. This requires
a better understanding of the mechanisms that either select for, or promote transformation of, HGSOC cells to
an aggressive, therapy-resistant phenotype. While previous studies on PtR have focused on DNA repair
pathways or altered membrane transporters, new concepts support the hypothesis that a key contributor to PtR
is the reprogramming of cancer cells into a less differentiated and metabolically adaptable state. This
collaborative proposal by three established ovarian cancer researchers will leverage their interdisciplinary
expertise and rich resources to define new molecular mechanisms of PtR in ovarian cancer. CMA1 will utilize
deep imaging to define clinically-relevant biomarkers of PtR while digital spatial profiling and systems biology
will be used to identify molecular pathways underlying PtR. Preclinical immunocompetent mouse models will be
used to test potential targeted therapies discovered in CMA1,2&3. CMA2 will study metabolic adaptation
associated with the emergence of PtR focusing on a shift to fatty acid oxidation in resistant HGSOC cells and
tumors. CMA2 will use resources shared with CMA1&3 and cellular biology and novel single cell metabolic
imaging to define unique metabolic dependencies of PtR HGSOC. As resistant tumors are highly susceptible to
death induced by oxidized lipid membranes, mechanisms of ferroptosis will be examined in PtR models treated
with novel metabolism targeting agents, which will be tested together with CMA1. CMA3 will define the emergent
de-differentiated phenotype in recurrent HGSOC through transcriptomic analysis of patient tumors collected at
various stages of disease progression. By defining molecular pathways that lead to cellular de-differentiation,
we will reveal new vulnerabilities that can be therapeutically exploited using small molecules, kinase inhibitors,
and cell-based immune therapy approaches Multi-omics data, patient derived organoids, and PDX models will
provide valuable shared resource for collaborative projects in CMA1&2.
The overarching hypothesis of CMA2 is that metabolic reprogramming is a key and necessary step in the
development of PtR. We speculate that this shift is initiated through altered oxidative status in cancer cells, due
to DNA injuries inflicted by platinum. To test the hypothesis, we will determine whether Pt-R cancer cells and
tumors undergo a metabolic shift to fatty acid oxidation caused by increased generation of reactive oxygen
species (ROS). We will measure intracellular ROS, glucose and lipid consumption and quantify expression and
function of key lipid transporters and rate limiting enzymes regulating lipogenesis. Molecular findings will be
validated by using high content stimulated Raman scattering (SRS) metabolic imaging and multimodal SRS /
two-photon excitation fluorescence (TPEF). We will test whether by blockade of key enzymes or transporters
involved in metabolic reprogramming can overcome the state of resistance and whether these inhibitors induce
cell death in PtR cells through ferroptosis. Mechanistic understanding of this process will lead to new treatment
opportunities for fatal PtR HGSOC and other cancers.
项目总结
此协作优秀奖申请(CMA)由三个项目(CMA1-3)组成,解决了一个关键问题
卵巢癌临床治疗中的挑战。卵巢癌最常见和最致命的亚型
癌症是高级别浆液性卵巢癌(HGSOC)。HGSOC合并外科手术的标准治疗
以铂为基础的化疗使细胞减少。这种治疗最初在实现缓解方面是成功的。
然而,大多数女性的癌症会复发。复发疾病的患者可能会继续对其他
但最终会形成铂金阻力(PTR)。在这一点上,肿瘤通常是
对其他治疗策略具有抗药性。提高HGSOC存活率的关键是防止发展
或寻找靶向耐药肿瘤的替代方法。这一跨学科和
合作项目是寻找治疗HGSOC疗效的新靶点和生物标记物。这需要
更好地理解选择或促进HGSOC细胞转化为
一种侵略性的、对治疗有抵抗力的表型。虽然以前对PTR的研究主要集中在DNA修复上
途径或改变的膜转运蛋白,新的概念支持这一假设,即PTR的关键贡献者
是将癌细胞重新编程到较低分化和新陈代谢适应状态。这
由三位成熟的卵巢癌研究人员提出的合作提案将利用他们的跨学科
专业知识和丰富的资源,以确定卵巢癌PTR的新分子机制。CMA1将利用
深度成像以确定PTR的临床相关生物标记物,同时数字空间剖面图和系统生物学
将被用来确定PTR的分子途径。临床前免疫活性小鼠模型将是
用于测试在CMA1、2和3中发现的潜在靶向治疗。CMA2将研究代谢适应
与PTR的出现有关,集中在耐药的HGSOC细胞向脂肪酸氧化的转变和
肿瘤。CMA2将使用与CMA1&3共享的资源、细胞生物学和新的单细胞代谢
成像以确定PTR HGSOC的独特代谢依赖性。因为耐药肿瘤对
氧化脂质膜引起的死亡,铁性下垂的机制将在PTR治疗模型中进行研究
新型新陈代谢靶向剂,将与CMA1一起进行测试。CMA3将定义新的
复发性HGSOC的去分化表型通过对收集于
疾病发展的不同阶段。通过定义导致细胞去分化的分子途径,
我们将揭示新的漏洞,这些漏洞可以通过使用小分子、激酶抑制剂、
基于细胞的免疫治疗方法--多组学数据、患者衍生的有机化合物和PDX模型将
为CMA1和CM2中的协作项目提供有价值的共享资源。
CMA2的首要假设是新陈代谢重新编程是
PTR的发展。我们推测,这种转变是通过改变癌细胞的氧化状态而启动的,
铂对DNA造成的损伤。为了验证这一假设,我们将确定铂-R癌细胞和
由于活性氧生成的增加,肿瘤经历了向脂肪酸氧化的代谢转变
种(ROS)。我们将测量细胞内ROS,葡萄糖和脂肪的消耗,并量化表达和
调节脂肪生成的关键脂质转运体和限速酶的功能。分子研究结果将会是
利用高含量受激拉曼散射(SRS)代谢成像和多峰SRS/
双光子激发荧光(TPEF)。我们将测试是否通过阻断关键酶或转运蛋白
参与代谢重新编程可以克服抵抗状态,以及这些抑制剂是否会诱导
铁性下垂引起的PTR细胞死亡。从机理上理解这一过程将导致新的治疗方法
致命性PTR、HGSOC和其他癌症的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniela E Matei其他文献
Daniela E Matei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniela E Matei', 18)}}的其他基金
Project 02: Tumor Methylomics Analysis Link with Racial Disparities in Ovarian Cancer
项目02:肿瘤甲基组学分析与卵巢癌种族差异的联系
- 批准号:
10488640 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Project 02: Tumor Methylomics Analysis Link with Racial Disparities in Ovarian Cancer
项目02:肿瘤甲基组学分析与卵巢癌种族差异的联系
- 批准号:
10265428 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An Epigenetic Strategy for Restoring Carboplatin Sensitivity in Ovarian Cancer
恢复卵巢癌卡铂敏感性的表观遗传学策略
- 批准号:
8806535 - 财政年份:2014
- 资助金额:
-- - 项目类别:
An Epigenetic Strategy for Restoring Carboplatin Sensitivity in Ovarian Cancer
恢复卵巢癌卡铂敏感性的表观遗传学策略
- 批准号:
8627405 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Tissue-dynamics Imaging for Therapeutic Efficacy in Ovarian Cancer
组织动力学成像对卵巢癌治疗效果的影响
- 批准号:
9085110 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Tissue-dynamics Imaging for Therapeutic Efficacy in Ovarian Cancer
组织动力学成像对卵巢癌治疗效果的影响
- 批准号:
8471381 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Tissue-dynamics Imaging for Therapeutic Efficacy in Ovarian Cancer
组织动力学成像对卵巢癌治疗效果的影响
- 批准号:
8656327 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
- 批准号:
EP/Z531856/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
- 批准号:
EP/Z531935/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
- 批准号:
EP/Z531947/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
- 批准号:
EP/Z531923/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




