The Pulmonary Pre-malignancy Atlas in the Lung Adenocarcinoma Spectrum

肺腺癌谱中的肺癌前图谱

基本信息

  • 批准号:
    10480632
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Lung cancer is the leading cause of cancer death among US Veterans despite recent therapeutic advances. The National Lung Screening Trial (NLST) has provided compelling evidence of the efficacy lung cancer screening, using low-dose computed tomography (LDCT), to reduce lung cancer mortality. The benefits of screening, however, must be reconciled with potential harms, including high false-positive rates and the possibility of overdiagnosis. Recent studies demonstrate that lung cancer often exhibits significant molecular heterogeneity because of genomic mutations, facilitating the initiation and expansion of diverse cell populations within the tumor, promoting resistance to targeted and immune therapies, and impacting patient survival. It is critical to characterize and predict tumor behavior in order to develop appropriate clinical management of early-stage lung cancer. We have profiled lung adenocarcinoma (LUAD) in the NLST by whole-exome sequencing (WES) and multiplex immunofluorescence (MIF). Available data includes clinical and nodule information, LDCT images acquired at three time points, and long-term clinical follow-up, which allows us to assess aggressive versus indolent behavior. We hypothesize that somatic mutations impact immune responses, shaping the tumor microenvironment (TME) and morphology, can be described by quantitative features extracted from LDCTs. Our goal is to develop a systematic approach integrating molecular signature and clinical imaging profiles to distinguish between aggressive and indolent early-stage lung cancer by utilizing data collected in the NLST study and validating findings through the analysis of publicly available data sets. We plan the following specific aims: 1) To identify the somatic mutation profiles associated with aggressive tumor behavior. In addition to analyzing the NLST data, we will extend our analysis to publicly available data sets, including The Cancer Genome Atlas (TCGA) and the Stanford Non-Small Cell Lung Cancer Radiogenomic dataset. From these two data sets, we will select subjects with equivalent clinical features to the NLST cohort. 2) To identify tumor microenvironment alteration characteristics associated with aggressive behavior in the NLST cohort. We will cross-validate our TME findings with the signatures derived from transcriptome data of publicly available data sets, as noted in Aim 1. We will deconvolute the transcriptome data to estimate the composition of cell types in TME by utilizing the cell lineage markers, which we have identified from single-cell transcriptome data of lung cancer. 3) To integrate the LDCT features and molecular profiles that differentiated aggressive from indolent behaviors in the NLST cohort. We will leverage machine learning techniques to extract and combine features from LDCT with genetic and TME signatures, as identified in Aim 1 and 2. Predicting disease aggressiveness will improve personalized patient therapy for early-stage lung cancer.
肺癌是美国退伍军人癌症死亡的主要原因,尽管最近治疗取得了进展。的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linh M Tran其他文献

Linh M Tran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
  • 批准号:
    23KF0076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
  • 批准号:
    10740308
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
  • 批准号:
    10818803
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10743857
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10558629
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10508739
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10570256
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10364874
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了