Statistics Core
统计核心
基本信息
- 批准号:10489295
- 负责人:
- 金额:$ 119.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiological ModelsBiomechanicsBiophysicsCharacteristicsClinicalCognitionCognitiveCollectionComplexCountryDataData CollectionData Management ResourcesData PoolingData SecurityData SetDatabase Management SystemsDatabasesDementiaDevelopmentDisease ProgressionEnrollmentGeneticGoalsImageImpaired cognitionInjuryInternetLesionMachine LearningMagnetic Resonance ImagingMeasuresMethodsModelingOutcomeParticipantPerformancePlasmaPopulationPopulation HeterogeneityProcessProtocols documentationQualifyingQuality ControlReportingResearchResearch DesignResearch PersonnelResourcesRiskRisk FactorsRoleSecureSiteSourceStandardizationStatistical Data InterpretationStratificationSystemTestingWorkanalytical methodbiological systemsclinical research siteclinically significantcognitive changecohortcomputer frameworkcomputerized data processingdata accessdata collection sitedata de-identificationdata harmonizationdata integrationdata managementdata pipelinedata portaldata reductiondata repositorydata sharingdata toolsdatabase querydeep learningdesignfollow-upinnovationmembermultimodalityneuroimagingparticipant enrollmentprecision medicineprogramsrecruitrepositoryrisk predictionrisk prediction modelstatisticsuser-friendlyweb appweb based interfacewhite matterwhite matter injury
项目摘要
PROJECT SUMMARY – Statistics Core
The purpose of the Statistics Core (SC) is to support and advance the Clinical significance of INciDEntal white
matter lEsions on MRI in a Diverse population with cognitive complaints (INDEED) by developing innovative
tools for data collection and management, harmonizing data across clinical sites, developing deep learning and
biomechanical neuroimaging quantification of white matter injury, performing statistical analysis for
investigators, and sharing data through a research portal with internal and external investigators. The SC will
undertake 5 specific aims to fulfill this purpose: 1) develop a data management system that will integrate data
across the cores, provide a reporting system for tracking of study progress and describing characteristics of
participants, and support a resource portal for data sharing and data interrogation; 2) provide harmonization of
neuroimaging data to enable pooling of data across sites; 3) develop methods to better capture the spectrum
of white matter injury and its biomechanical consequences; 4) test key hypotheses posed in the Overall section
of the application; and 5) develop and validate risk scores. The SC brings together a qualified team with
expertise in data management, MRI harmonization, development of imaging metrics and numerical models of
biological systems, analysis of risk factors associated with cognitive decline and incident dementia, and
development of risk scores to accomplish these aims. Innovations include a database capable of dynamic
reporting and querying of the database, cutting-edge approaches to MRI harmonization, deep learning and
multivariate approaches to better characterize white matter injury, and development of multi-modal risk scores.
The SC will integrate data from the Repository Core, provide tracking information for the Recruitment and
Retention Core, and serve on committees within the Administrative Core. The work of the Core will support the
overall goal of predicting the impact of progressive WM injury on cognition using a precision medicine
approach in a large and diverse clinical population.
项目摘要-统计核心
统计核心(SC)的目的是支持和推进INciDENTAL白色的临床意义
通过开发创新的方法,
用于数据收集和管理的工具,协调临床研究中心的数据,开发深度学习和
白色物质损伤的生物力学神经成像量化,进行统计分析
调查员,并通过研究门户与内部和外部调查员共享数据。SC将
为实现这一目标,我们承诺实现5个具体目标:1)开发一个数据管理系统,
跨核心,提供一个报告系统来跟踪研究进展并描述特征
参与者,并支持用于数据共享和数据查询的资源门户; 2)提供
神经成像数据,以实现跨站点的数据池; 3)开发更好地捕获频谱的方法
白色物质损伤及其生物力学后果; 4)测试总体部分中提出的关键假设
5)开发和验证风险评分。SC汇集了一个合格的团队,
数据管理、MRI协调、成像指标和数字模型开发方面的专业知识,
生物系统,分析与认知能力下降和痴呆相关的风险因素,以及
制定风险评分以实现这些目标。创新包括一个能够动态
数据库的报告和查询,MRI协调的尖端方法,深度学习和
更好地表征白色损伤的多变量方法,以及多模态风险评分的发展。
SC将整合来自存储库核心的数据,为招聘提供跟踪信息,
保留核心,并在行政核心内的委员会任职。核心的工作将支持
使用精确医学预测进行性WM损伤对认知的影响的总体目标
在一个庞大而多样化的临床人群中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kumar B. Rajan其他文献
Multi-Institution Validation of an Emergency Ultrasound Image Rating Scale—A Pilot Study
- DOI:
10.1016/j.jemermed.2015.01.010 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:
- 作者:
Samuel H.F. Lam;John Bailitz;David Blehar;Brent A. Becker;Beatrice Hoffmann;Andrew S. Liteplo;Kumar B. Rajan;Michael Lambert - 通讯作者:
Michael Lambert
Kumar B. Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kumar B. Rajan', 18)}}的其他基金
Nonlinear Models of Cognition Preceding AD in a Biracial Population Sample
混血人群样本中 AD 之前认知的非线性模型
- 批准号:
10319798 - 财政年份:2021
- 资助金额:
$ 119.54万 - 项目类别:
Factors Influencing Decline in AD Trends in a Biracial Population Study
混血人口研究中影响 AD 趋势下降的因素
- 批准号:
9745784 - 财政年份:2017
- 资助金额:
$ 119.54万 - 项目类别:
Factors Influencing Decline in AD Trends in a Biracial Population Study
混血人口研究中影响 AD 趋势下降的因素
- 批准号:
9422107 - 财政年份:2017
- 资助金额:
$ 119.54万 - 项目类别:
Nonlinear Models of Cognition Preceding AD and non-AD in a Biracial Population Sample
混血人群样本中 AD 和非 AD 之前的认知非线性模型
- 批准号:
9174766 - 财政年份:2016
- 资助金额:
$ 119.54万 - 项目类别:
Nonlinear Models of Cognition Preceding AD and non-AD in a Biracial Population Sample
混血人群样本中 AD 和非 AD 之前的认知非线性模型
- 批准号:
9339530 - 财政年份:2016
- 资助金额:
$ 119.54万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 119.54万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 119.54万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 119.54万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 119.54万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 119.54万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 119.54万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 119.54万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 119.54万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 119.54万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 119.54万 - 项目类别: