Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
基本信息
- 批准号:10443246
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAwardBasement membraneBenignBiocompatible MaterialsBiophysical ProcessBreast Cancer CellBullaCarcinomaCell Cycle ProgressionCellsCharacteristicsClinical TrialsCollagenCollagen Type IDiseaseDuctal CarcinomaElasticityEndotheliumEpitheliumExhibitsExtracellular MatrixExtravasationFailureFilopodiaGoalsHumanIndividualIntegrin BindingIntegrinsInterventionInvadedKnowledgeLesionLigandsMalignant - descriptorMalignant Epithelial CellMatrix Metalloproteinase InhibitorMeasuresMechanicsMediatingMesenchymalMissionMitoticModelingMolecularMolecular TargetMorphologyNanoporousNatureNeoplasm MetastasisNoninfiltrating Intraductal CarcinomaPeptide HydrolasesPhasePhysiologicalPolymersProcessProliferatingPublic HealthResearchResistanceRoleTestingTissuesUnited States National Institutes of HealthViscosityWorkbreast cancer progressionbreast lesioncancer cellcancer typecell motilitycell typecrosslinkdensitydisabilityepigenomeinfiltrating duct carcinomainnovationmalignant breast neoplasmmalignant phenotypemammary epitheliummechanical propertiesmigrationmortalitynovelnovel diagnosticsnovel therapeutic interventionpharmacologicpolymerizationpreventthree dimensional cell culturetumor progressionviscoelasticity
项目摘要
Ductal carcinoma is the most common form of breast cancer and progresses to invasive ductal carcinoma (IDC)
when the carcinoma invades through the basement membrane (BM) into the stromal tissue. Invasion is a key
step in ductal carcinoma progression that is associated with an increased likelihood for metastasis, the most
deadly aspect of breast cancer. During metastasis, cancer cells must also invade BM during intravasation and
extravasation. The overall goal of our work is to determine how matrix mechanical plasticity (malleability)
regulates breast cancer invasion and migration. In the initial 5-year phase of this R37 award, we found that breast
cancer tissue is mechanically plastic, and that individual breast cancer cells can migrate through nanoporous
matrices independent of proteases using invadopodia if the matrix exhibits sufficient matrix mechanical plasticity.
We also found that increased covalent crosslinking of the matrix or increased stiffness inhibits invadopodia
formation, and that cancer cells can utilize filopodia to migrate along soft basement-membrane-like substrates if
the substrate is sufficiently viscoelastic or malleable. We have also pursued related lines on inquiry, finding that
extracellular matrix viscoelasticity regulates cell-cycle progression, that cancer cells generate force in order to
undergo mitotic elongation and divide in confining type-1 collagen rich matrices, that increased stiffness
regulates breast cancer progression through a YAP-independent mechanism, and that increased stiffness
induces broad changes in the epigenome that functionally mediate a stiffness-induced malignant phenotype in
mammary epithelium. While our initial studies on the role of malleability in invasion focused on single cell invasion,
initial invasion of the BM during cancer progression is thought to be collective in nature, involving the coordinated
activity of multiple cells. The specific hypothesis to be tested in this R37 extension application is that matrix
mechanical plasticity (malleability) is a key physical parameter mediates collective invasion of the BM and
subsequent migration through the type-1 collagen rich stromal matrix during cancer progression. This hypothesis
will be tested by pursuing the following two specific aims: (1) Determine how basement membrane mechanical
plasticity (malleability) mediates collective cell invasion; (2) Determine how mechanical plasticity (malleability) of
type-1 collagen rich matrices mediates collective migration of breast cancer cells. This approach is innovative
because of its focus on understanding the role of malleability in mediating protease-independent and -dependent
invasion and migration, as malleability is a physical characteristic of ECM, related to matrix viscosity but distinct
from elasticity or density, which has been largely ignored in studies to date. This work is also innovative in its
focus on collective invasion of the basement membrane instead of single cell invasion. The proposed research
is significant because it will reveal the role of ECM malleability in mediating both protease-dependent and
protease-independent collective invasion and migration by breast cancer cells, potentially uncovering previously
un-described modes of invasion or migration.
导管癌是乳腺癌中最常见的一种,进展为浸润性导管癌(IDC)。
当癌通过基底膜(BM)侵入间质组织时。入侵是关键
与转移可能性增加相关的导管癌进展中的一步,最
乳腺癌的致命方面。在转移过程中,癌细胞还必须在血管内和
渗出。我们工作的总体目标是确定基质的机械塑性(延展性)
调节乳腺癌的侵袭和转移。在这个R37奖项的最初5年阶段,我们发现乳房
癌症组织是机械可塑性的,单个乳腺癌细胞可以通过纳米孔迁移
如果基质表现出足够的机械可塑性,则使用不依赖于蛋白酶的基质。
我们还发现,增加基质的共价交联度或增加硬度可以抑制内翻足
癌细胞可以利用丝状基底物沿着柔软的基底膜样底物迁移,如果
基材具有足够的粘弹性或延展性。我们也进行了相关的调查,发现
细胞外基质粘弹性调节细胞周期进程,癌细胞产生力量以
经历有丝分裂的延长,并在限制的类型-1型胶原丰富的基质,这增加了硬度
通过一种不依赖YAP的机制调节乳腺癌的进展,这种僵硬程度的增加
在表观基因组中诱导广泛的变化,在功能上介导僵直诱导的恶性表型
乳腺上皮细胞。虽然我们最初对延展性在侵袭中的作用的研究集中在单细胞侵袭上,
在癌症进展过程中,骨髓最初的侵袭被认为是集体性的,涉及协调的
多个细胞的活动。在此R37扩展应用程序中要测试特定假设是矩阵
机械塑性(延展性)是调节BM集体侵袭的关键物理参数
在癌症进展过程中,随后通过富含1型胶原的基质基质进行迁移。这一假设
将通过追求以下两个具体目标进行测试:(1)确定基底膜如何机械
可塑性(延展性)调节集体细胞入侵;(2)决定机械可塑性(延展性)如何
富含1型胶原的基质介导乳腺癌细胞的集体迁移。这种方法是创新的。
因为它侧重于理解延展性在调节蛋白酶非依赖性和依赖性中的作用
侵袭和迁移,因为延展性是ECM的一个物理特性,与基质粘度有关,但不同
从弹性或密度来看,这在很大程度上被研究忽视了。这项工作还具有创新性,其
重点是基底膜的集体侵袭,而不是单个细胞的侵袭。拟议的研究
具有重要意义,因为它将揭示ECM延展性在调节蛋白水解酶依赖和
乳癌细胞非依赖于蛋白水解酶的集体侵袭和迁移
未描述的入侵或迁徙方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovijit Chaudhuri其他文献
Ovijit Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovijit Chaudhuri', 18)}}的其他基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10314031 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10080718 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
Hydrogels with Controlled Degradation and Stress Relaxation for Engineered Cartilage
用于工程软骨的具有受控降解和应力松弛的水凝胶
- 批准号:
9770767 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8165998 - 财政年份:2010
- 资助金额:
$ 34.78万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8305963 - 财政年份:2010
- 资助金额:
$ 34.78万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8003609 - 财政年份:2010
- 资助金额:
$ 34.78万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 34.78万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 34.78万 - 项目类别:
Postdoctoral Fellowships