Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
基本信息
- 批准号:10080718
- 负责人:
- 金额:$ 36.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinBasement membraneBenignBiocompatible MaterialsBiophysical ProcessBreast Cancer CellCarcinomaCellsCharacteristicsClinical TrialsCollagenDiseaseDuctal CarcinomaElasticityEndotheliumEpithelialExhibitsExtracellular MatrixExtravasationFailureGoalsHumanIntegrin BindingIntegrinsInterventionInvadedKnowledgeLeadLesionLigandsLiquid substanceMalignant - descriptorMalignant Epithelial CellMatrix Metalloproteinase InhibitorMeasuresMechanicsMediatingMesenchymalMissionModelingMolecularMolecular TargetMorphologyNanoporousNatureNeoplasm MetastasisNoninfiltrating Intraductal CarcinomaPeptide HydrolasesPharmacologyPhysiologicalProcessProliferatingPublic HealthResearchResistanceRoleStructureTestingTissuesUnited States National Institutes of HealthViscosityWorkbreast cancer progressionbreast lesioncancer cellcancer typecell motilitycell typedensitydisabilityinfiltrating duct carcinomainnovationmalignant breast neoplasmmammary epitheliummechanical propertiesmigrationmortalitynovelnovel diagnosticsnovel therapeutic interventionpolymerizationpreventthree dimensional cell cultureviscoelasticity
项目摘要
Ductal carcinoma is the most common form of breast cancer and progresses to Invasive Ductal Carcinoma
(IDC) when the carcinoma invades through the basement membrane (BM) into the stromal tissue. Invasion is a
key step in ductal carcinoma progression that is associated with an increased likelihood for metastasis, the
most deadly aspect of breast cancer. During metastasis, cancer cells must also invade BM during intravasation
and extravasation. Cancer cells are thought to utilize proteases to degrade the BM during invasion of the BM
using specialized structures known as invadopodia. Known modes of protease-independent invasion and
migration, involving cells squeezing through pores in the ECM, would be inhibited by the nanoporous nature of
the BM. However, physiological ECM is viscoelastic, exhibiting some characteristics of viscous fluids, and
cellular forces can induce flow and permanent deformation of the matrix. In other words, viscoelastic ECM is
malleable, and cell generated forces may expand pores, providing a mechanism for cells to mechanically
remodel the ECM and physically clear a path for migration, independent of proteases. While malleability is
related to matrix viscosity, it is distinct from matrix elasticity. Interestingly, malignant breast lesions have been
found to exhibit a greater degree of viscosity than benign lesions. Importantly, the concept of malleability might
be relevant to protease-dependent migration as well, as the action of proteases may be to make the matrix
more malleable. The specific hypothesis to be tested in this application is that malleability is a key physical
parameter of the BM that mediates protease-dependent and protease-independent cancer cell invasion and
migration. This hypothesis is supported by preliminary studies finding that cancer cells can invade and migrate
through nanoporous matrices that contain BM ligands with intermediate or high-malleability in a protease-
independent manner, utilizing invadopodial like protrusions to initiate invasion, but are unable to invade and
migrate through matrices with low malleability. This hypothesis will be tested by pursuing the following three
specific aims: (1) Fabricate materials for 3D cell culture with independently tunable malleability that present
ligands and stiffness relevant to the BM of mammary epithelium; (2) Determine how ECM malleability regulates
invadopodial protrusions; and (3)! Identify molecular and biophysical mechanisms underlying protease-
independent migration through ECMs with different levels of malleability. This approach is innovative because
of its focus on understanding the role of malleability in mediating protease-independent and -dependent
invasion and migration, as malleability is a physical characteristic of ECM, related to matrix viscosity but
distinct from elasticity or density, which has been largely ignored in studies to date. The proposed research is
significant because it will reveal the role of ECM malleability in mediating both protease-dependent and
protease-independent invasion and migration by breast cancer cells, potentially uncovering previously un-
described modes of invasion or migration.
乳腺导管癌是乳腺癌中最常见的一种,可发展为浸润性导管癌
(IDC)当癌通过基底膜(BM)侵入基质组织时。入侵是一个
导管癌进展的一个关键步骤,与转移的可能性增加有关,
乳腺癌最致命的一面在转移过程中,癌细胞也必须在浸润过程中侵入BM
和外渗。认为癌细胞在侵袭BM期间利用蛋白酶降解BM
使用被称为侵入伪足的特殊结构。已知的蛋白酶非依赖性入侵模式,
涉及细胞通过ECM中的孔挤压的迁移将被
BM。然而,生理ECM是粘弹性的,表现出粘性流体的一些特性,并且
细胞力可引起基质的流动和永久变形。换句话说,粘弹性ECM是
延展性,细胞产生的力可以扩大孔隙,为细胞提供机械地
重塑ECM并物理清除迁移路径,不依赖于蛋白酶。虽然韧性是
它与基质粘度有关,不同于基质弹性。有趣的是,恶性乳腺病变已经
发现比良性病变表现出更大程度的粘性。重要的是,延展性的概念可能
也与蛋白酶依赖性迁移有关,因为蛋白酶的作用可能是使基质
更具可塑性在本申请中要测试的具体假设是,延展性是一个关键的物理特性,
介导蛋白酶依赖性和蛋白酶非依赖性癌细胞侵袭的BM参数,
迁移这一假设得到了初步研究的支持,初步研究发现癌细胞可以侵入和迁移,
通过含有在蛋白酶中具有中等或高延展性的BM配体的纳米多孔基质,
独立的方式,利用侵入足样突起来启动侵入,但不能侵入,
通过低延展性的基质迁移。这一假设将通过以下三个方面进行检验
具体目标:(1)制造具有独立可调延展性的3D细胞培养材料,
与乳腺上皮BM相关的配体和刚度;(2)确定ECM延展性如何调节
内陷足突;(3)!确定蛋白酶的分子和生物物理机制-
通过具有不同延展性水平的ECM独立迁移。这种方法是创新的,因为
它的重点是了解可塑性在介导蛋白酶独立和依赖的作用,
侵入和迁移,因为延展性是ECM的物理特性,与基质粘度有关,
与弹性或密度不同,弹性或密度在迄今为止的研究中基本上被忽视。拟议的研究是
重要的是,它将揭示ECM延展性在介导蛋白酶依赖性和
乳腺癌细胞的蛋白酶非依赖性侵袭和迁移,可能揭示了以前未发现的
描述了入侵或迁移的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovijit Chaudhuri其他文献
Ovijit Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovijit Chaudhuri', 18)}}的其他基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 36.04万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10314031 - 财政年份:2018
- 资助金额:
$ 36.04万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10443246 - 财政年份:2018
- 资助金额:
$ 36.04万 - 项目类别:
Hydrogels with Controlled Degradation and Stress Relaxation for Engineered Cartilage
用于工程软骨的具有受控降解和应力松弛的水凝胶
- 批准号:
9770767 - 财政年份:2018
- 资助金额:
$ 36.04万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8165998 - 财政年份:2010
- 资助金额:
$ 36.04万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8305963 - 财政年份:2010
- 资助金额:
$ 36.04万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8003609 - 财政年份:2010
- 资助金额:
$ 36.04万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 36.04万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 36.04万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 36.04万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 36.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 36.04万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 36.04万 - 项目类别:
Postdoctoral Fellowships