Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
基本信息
- 批准号:10735701
- 负责人:
- 金额:$ 38.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqActomyosinAddressAdherent CultureAdhesionsAdhesivesAlginatesAutomobile DrivingBasement membraneBindingBiocompatible MaterialsBioinformaticsBiological AssayBiological ProcessBiophysical ProcessBiophysicsBreast Epithelial CellsCRISPR screenCRISPR/Cas technologyCell AdhesionCell ProliferationCell VolumesCellsCharacteristicsChromatinCollagen Type IDataDepositionDiseaseElasticityEpigenetic ProcessEpithelial CellsExhibitsExtracellular MatrixFibroblastsGene ExpressionGenesGenetic TranscriptionGoalsHumanHydrogelsIntegrin BindingIntegrinsIon ChannelKnock-outKnowledgeLigandsLiquid substanceMAP Kinase GeneMechanicsMediatingMesenchymal Stem CellsMissionMolecularMolecular AnalysisMorphogenesisPIK3CG genePathway interactionsProcessProliferatingRegulationRelaxationResearchRoleSignal PathwaySolidSp1 Transcription FactorStressTissuesTranscriptional RegulationUnited States National Institutes of HealthViscosityWorkbiophysical techniquescancer cellcell behaviordensitydisabilityepigenetic regulationepigenomegenome-widegenome-wide analysisin vivoinnovationmechanotransductionmigrationnovelreconstitutionresponsestem cell differentiationthree dimensional cell culturetooltranscriptome sequencingviscoelasticitywhole genome
项目摘要
Cell proliferation is a fundamental biological process that often occurs for cells in a 3D context in vivo, in which
cells are surrounded by extracellular matrix (ECM) and other cells, and various applications rely on the
proliferation of cells within a biomaterial. It has long been known that changes in matrix stiffness impact cell
behaviors through mechanotransduction, and mechanisms of stiffness-sensing in 2D culture are now
established. However, the mechanisms mediating the impact of changes in matrix stiffness on cell proliferation
in 3D remain unclear. Further, living tissues and ECMs are viscoelastic, exhibiting some characteristics of elastic
solids and some of viscous liquids. Matrix viscoelasticity is sensed through mechanotransduction, and we have
found that changes in matrix viscoelasticity impact cell spreading, migration, proliferation, stem cell
differentiation, matrix deposition, morphogenesis, and gene expression. However, the mechanisms mediating
the impact of matrix viscoelasticity on these processes, particularly proliferation remain unclear. The goal of the
proposed work is to determine the mechanism mediating the impact of matrix stiffness and viscoelasticity on cell
proliferation in 3D matrices. Our overall hypothesis is that mechanosensitive ion channel-mediated pathways
and integrin-mediated pathways interplay to sense matrix viscoelasticity and stiffness, and subsequently control
proliferation through changes in chromatin accessibility, YAP-independent transcription, and a set of molecular
regulators not implicated from 2D culture studies. We will address this hypothesis in 3 aims, using an approach
that involves the use of alginate hydrogels with independently tunable viscoelasticity, stiffness, and RGD ligand
density for 3D culture of adherent cells, including fibroblasts, epithelial cells, and mesenchymal stem cells. In
aim 1, we will determine the biophysical mechanisms underlying the impact of hydrogel viscoelasticity, stiffness,
and adhesivity on the proliferation of adherent cells in 3D culture. In Aim 2, we will elucidate transcriptional and
epigenetic regulation of mechanotransduction and proliferation, using RNA-seq and ATAC-seq combined with
advanced bioinformatics analyses. In Aim 3, we will identify novel regulators of proliferation and
mechanotransduction in 3D using genome-wide CRISPR screening. Innovative aspects of this approach include
the study of mechanisms mediating mechanotrasduction and proliferation in 3D matrices, the focus on
viscoelasticity (beyond stiffness), the potential for discovering YAP-independent mechanisms of
mechanotransduction, the identification of how the epigenome regulates mechanotransduction and proliferation
in 3D, and the application of a CRISPR screen to identify novel molecular regulators of mechanotransduction.
The significance of this work is that it will determine the biophysical and molecular mechanisms by which ECM
or biomaterial stiffness and viscoelasticity regulate cell proliferation in 3D. Given the importance of cell
proliferation, the ubiquity of matrix viscoelasticity in ECMs, and the potential relevance of discovered
mechanisms of mechanotransduction to other processes, the significance is expected to be high.
细胞增殖是一个基本的生物学过程,通常发生在细胞体内的三维环境中
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovijit Chaudhuri其他文献
Ovijit Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovijit Chaudhuri', 18)}}的其他基金
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10314031 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10443246 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10080718 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Hydrogels with Controlled Degradation and Stress Relaxation for Engineered Cartilage
用于工程软骨的具有受控降解和应力松弛的水凝胶
- 批准号:
9770767 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8165998 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8305963 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8003609 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 38.6万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 38.6万 - 项目类别: