5/5-Cognitive Neurocomputational Task Reliability & Clinical Applications Consortium
5/5-认知神经计算任务可靠性
基本信息
- 批准号:10459392
- 负责人:
- 金额:$ 36.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectiveAnhedoniaAssessment toolAttentionBehaviorBehavioralBig DataBrainClinicClinicalCognitionCognitiveCommunitiesComplementDataData CollectionDecision MakingDimensionsElectroencephalographyEpisodic memoryEvaluation StudiesFloorFunctional disorderGeneticGenetic studyGoalsGoldHumanImpaired cognitionImpairmentIndividualInternetInterventionLaboratoriesLearningLifeLongitudinal StudiesMathematicsMeasurementMeasuresMental DepressionMental disordersMethodsModelingMood DisordersMotivationParameter EstimationPatient RecruitmentsPatientsPatternPerceptionPerformancePopulationPositive ValenceProductivityPropertyPsychiatryPsychological reinforcementPsychometricsPsychopathologyPsychotic DisordersResearchResearch Domain CriteriaResearch PersonnelResourcesSamplingShort-Term MemorySiteSpecific qualifier valueSpecificitySymptomsSystemTask PerformancesTestingTranslatingVariantVisual PerceptionWorkbehavior measurementclinical applicationclinical predictorscognitive functioncognitive neurosciencecognitive processcognitive systemcognitive testingcomputerized toolsdiscountingflexibilityfunctional outcomesinterestneuralneuromechanismneurophysiologynovelpopulation basedprecision medicinepsychologicpsychotic-like experiencesrecruitsevere mental illnessspatiotemporaltherapy developmenttooltool developmentweb-based tool
项目摘要
Advancements in computational psychiatry allow us to isolate multiple, specific cognitive mechanisms that
determine human behavior. This formal modeling framework generates quantitative parameter estimates that
can serve as bridges between pathophysiology and psychopathology. A major goal of computational psychiatry
is to translate these laboratory tools so that they can be used in the clinic. Two critical hurdles need to be
overcome. First, the enhanced validity and sensitivity of computational metrics needs to be established relative
to standard behavioral performance metrics in key psychiatric and nonpsychiatric populations. We propose to
do that by addressing a range of cognitive and motivational domains that have been strongly implicated in
psychopathology, including working and episodic memory, visual perception, reinforcement learning, and effort
based decision making. Second, we need to establish and optimize the psychometrics of these computational
metrics so that they can be used as tools in treatment development, treatment evaluation, longitudinal, and
genetic studies. These powerful metrics must have adequate test-retest reliability, and not be limited by ceiling
and floor effects. We propose to develop these methods using an open, flexible, and scalable framework and
demonstrate that they provide valid data both in the laboratory and in large-scale Internet-based data collection,
facilitating “big data” studies of cognitive processes. To this end, the current project will leverage the expertise
of Cognitive Neuroscience Task Reliability and Clinical applications in Serious mental illness (CNTRACS)
consortium, a multi-site research group with an established record of rapid cognitive tool development and
dissemination. Aim 1 is to establish that model based parameters for the measurement of cognitive function are
more sensitive than standard behavioral methods in assessing deficits across a range of common mental
disorders, and have an enhanced capacity to predict clinical symptoms and real-world functioning, with a sample
of 180 patients with psychotic and affective disorders (both medicated and unmedicated) and 100 healthy
controls. Aim 2 is to measure and optimize the psychometric properties (test re-test reliability, internal validity,
floor and absence of ceiling and practice effects) of computational parameters described in Aim 1, in a new
sample of 180 psychiatric patients and 100 healthy controls. Aim 3 is to establish the feasibility and replicability
of model-based analytic approaches outside the laboratory for assessing RDoC dimensions of interest, and to
assess their relationships to variation in psychotic-like experience, depression and anhedonia, as well as real-
world functioning in a community sample of 10,000 recruited over the Internet. Aim 4 is to validate key model
based parameters against well-characterized neurophysiological measures acquired using EEG recordings
during task performance. Successful completion of these Aims will significantly advance the field by providing
easily administered and scalable web-based tools for estimating the integrity of key neural systems that underlie
normal cognition and motivation and form the basis of common forms of cognitive and affective psychopathology.
计算精神病学的进步使我们能够分离出多种特定的认知机制
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional network changes and cognitive control in schizophrenia.
- DOI:10.1016/j.nicl.2017.05.001
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ray KL;Lesh TA;Howell AM;Salo TP;Ragland JD;MacDonald AW;Gold JM;Silverstein SM;Barch DM;Carter CS
- 通讯作者:Carter CS
What is not working in working memory?
工作记忆中什么不起作用?
- DOI:10.1016/j.biopsych.2010.08.005
- 发表时间:2010
- 期刊:
- 影响因子:10.6
- 作者:MacDonald3rd,AngusW
- 通讯作者:MacDonald3rd,AngusW
Theories of psychopathology: Introduction to a special section.
精神病理学理论:特殊部分简介。
- DOI:10.1037/abn0000824
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kent,JerillynS;Markon,Kristian;MacDonald,AngusW
- 通讯作者:MacDonald,AngusW
Self versus informant reports on the specific levels of functioning scale: Relationships to depression and cognition in schizophrenia and schizoaffective disorder.
- DOI:10.1016/j.scog.2017.04.001
- 发表时间:2017-09-01
- 期刊:
- 影响因子:0
- 作者:Ermel, Julia;Carter, Cameron S;Barch, Deanna M
- 通讯作者:Barch, Deanna M
Explicit and implicit reinforcement learning across the psychosis spectrum.
- DOI:10.1037/abn0000259
- 发表时间:2017-07
- 期刊:
- 影响因子:4.6
- 作者:Barch DM;Carter CS;Gold JM;Johnson SL;Kring AM;MacDonald AW;Pizzagalli DA;Ragland JD;Silverstein SM;Strauss ME
- 通讯作者:Strauss ME
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANGUS W MACDONALD其他文献
ANGUS W MACDONALD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANGUS W MACDONALD', 18)}}的其他基金
Characterizing State Representation Impairments in People with Early Psychosis
早期精神病患者状态表征障碍的特征
- 批准号:
10597074 - 财政年份:2020
- 资助金额:
$ 36.35万 - 项目类别:
Characterizing State Representation Impairments in People with Early Psychosis
早期精神病患者状态表征障碍的特征
- 批准号:
10377367 - 财政年份:2020
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
7812309 - 财政年份:2010
- 资助金额:
$ 36.35万 - 项目类别:
Imaging the Impact of Glutamate Liability Genes in Schizophrenia
谷氨酸责任基因对精神分裂症的影响成像
- 批准号:
7470504 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
8576889 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
7841790 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
Imaging the Impact of Glutamate Liability Genes in Schizophrenia
谷氨酸责任基因对精神分裂症的影响成像
- 批准号:
7567549 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
9095443 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
8882080 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
5/5-Cognitive Neuroscience Task Reliability & Clinical Applications Consortium
5/5-认知神经科学任务可靠性
- 批准号:
7693713 - 财政年份:2008
- 资助金额:
$ 36.35万 - 项目类别:
相似海外基金
Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
- 批准号:
EP/Y03726X/1 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
- 批准号:
EP/Z000025/1 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
- 批准号:
BB/X014673/1 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
- 批准号:
MR/Y011627/1 - 财政年份:2024
- 资助金额:
$ 36.35万 - 项目类别:
Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
- 批准号:
AH/V015834/2 - 财政年份:2023
- 资助金额:
$ 36.35万 - 项目类别:
Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
- 批准号:
2888014 - 财政年份:2023
- 资助金额:
$ 36.35万 - 项目类别:
Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
- 批准号:
2889627 - 财政年份:2023
- 资助金额:
$ 36.35万 - 项目类别:
Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
- 批准号:
23K19678 - 财政年份:2023
- 资助金额:
$ 36.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




