CRCNS: Sensory-Motor Integration in Mammalian Brian: experiment, analysis, modeling
CRCNS:哺乳动物布莱恩的感觉运动整合:实验、分析、建模
基本信息
- 批准号:9524750
- 负责人:
- 金额:$ 20.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal BehaviorAnimalsAreaBehaviorBehavioralBiologicalBiological Neural NetworksBrainChronicCommunicationComplexDataData AnalysesData CollectionData SetDevelopmentDimensionsDiseaseDistributed SystemsElectrical EngineeringEngineeringEsthesiaFeedbackFormulationFutureGaussian modelGoalsHeadHuntington DiseaseInstructionIsraelKnowledgeLanguageLeadLearningLiteratureMachine LearningMathematicsMethodologyMethodsMicroscopyModalityModelingMotorMotor ActivityMotor CortexMovementMusNatureNeuronsNeurosciencesNoiseOrganismParkinson DiseasePharmacogeneticsPhysiologyPopulationProcessProsthesisPsychophysicsResearch ProposalsResolutionRoboticsRoleSensoryStructural ModelsStructureSystemUncertaintyUniversitiesViralWorkanalytical methodawakebasebrain computer interfacecalcium indicatorcell typecontrol theorycostexperienceexperimental studyfunctional plasticityhigh dimensionalityinsightinterdisciplinary approachmathematical analysismedical schoolsmotor controlmotor impairmentmotor learningneural circuitnoveloperationoptogeneticssensorimotor systemsignal processingspatiotemporalsuccesstheoriestooltwo-photon
项目摘要
A major goal facing organisms acting in the natural world is the selection of appropriate actions based on
sensory information and prior knowledge accumulated through previous experience. Understanding how
neural networks process information and control such actions requires a breakthrough both in large scale
chronic data collection methods during behavioral tasks and in the development of new analysis and
modeling tools that will be able to capture the dynamics and organization of such neural networks.
To address key questions in the context of sensory-motor control and learning we propose a
multidisciplinary approach that will synergize the expertise of the four groups involved in cellular and
systems neuroscience, machine learning, signal processing, control theory and modeling. Our goal is to
establish an empirically-grounded systems-level model explaining the interaction and integration within the
sensory-motor system during behavioral tasks, which is consistent with the experimental data, and which
provides concrete predictions for future experiments. More specifically, we intend to further our
understanding on two main fronts. First, study cell type specific components that participate in the
movement command and in sensory-motor error prediction. We hypothesize that layer 2-3 neurons
subserve different roles from layer 5 neurons, and may be more strongly involved in error estimation rather
than in control. Second, we intend to investigate whether and how the sensory and motor ends change in
order to adapt to the new learned task. Here again we expect differences between the different cortical
layers.
Such a framework will not only provide new insights into the specific investigated system, but could be
transferrable more generally to probe the structure and functionality of complex biological networks. In
addition, the unique analysis methods developed and the deep understanding of biological sensory-motor
systems may contribute invaluably to fields such as robotics and network control, and to the development of
new prosthetics approaches within the field of Brain Computer Interfaces.
RELEVANCE (See instructions):
The goals of this research proposal are expected to provide novel insight on sensory-motor control as well
as structural and functional plasticity processes of the cortical network during sensory-motor learning. Deep
understanding of sensory-motor systems will aid in development of new treatment modalities for diseases
that impair motor function, such as Parkinson's and Huntington's diseases.
在自然界中行动的生物体面临的一个主要目标是根据以下情况选择适当的行动:
感觉信息和通过以前的经验积累的先验知识。了解如何
神经网络处理信息和控制此类行为都需要在大规模方面取得突破
在行为任务和新分析开发过程中的长期数据收集方法
建模工具将能够捕获此类神经网络的动态和组织。
为了解决感觉运动控制和学习背景下的关键问题,我们提出了一个
多学科方法将协同涉及细胞和细胞的四个小组的专业知识
系统神经科学、机器学习、信号处理、控制理论和建模。我们的目标是
建立一个以经验为基础的系统级模型,解释系统内部的相互作用和集成
行为任务期间的感觉运动系统,与实验数据一致,并且
为未来的实验提供具体的预测。更具体地说,我们打算进一步推进我们的
两个主要方面的理解。首先,研究参与细胞类型的特定成分
运动命令和感觉运动误差预测。我们假设第 2-3 层神经元
与第 5 层神经元具有不同的作用,并且可能更强烈地参与误差估计而不是
比控制。其次,我们打算研究感觉和运动末端是否以及如何变化
以适应新学到的任务。我们再次期望不同皮质之间的差异
层。
这样的框架不仅可以为特定的研究系统提供新的见解,而且可以
可更广泛地转移以探测复杂生物网络的结构和功能。在
此外,开发的独特分析方法和对生物感觉运动的深刻理解
系统可能对机器人和网络控制等领域以及计算机技术的发展做出不可估量的贡献
脑机接口领域的新假肢方法。
相关性(参见说明):
这项研究计划的目标预计也将为感觉运动控制提供新颖的见解
作为感觉运动学习期间皮质网络的结构和功能可塑性过程。深的
对感觉运动系统的理解将有助于开发新的疾病治疗方式
损害运动功能,例如帕金森病和亨廷顿病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD R COIFMAN其他文献
RONALD R COIFMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD R COIFMAN', 18)}}的其他基金
CRCNS: Sensory-Motor Integration in Mammalian Brian: experiment, analysis, modeling
CRCNS:哺乳动物布莱恩的感觉运动整合:实验、分析、建模
- 批准号:
9242184 - 财政年份:2016
- 资助金额:
$ 20.53万 - 项目类别:
CRCNS: Sensory-Motor Integration in Mammalian Brian: experiment, analysis, modeling
CRCNS:哺乳动物布莱恩的感觉运动整合:实验、分析、建模
- 批准号:
9315937 - 财政年份:2016
- 资助金额:
$ 20.53万 - 项目类别:
相似海外基金
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
- 批准号:
23K06786 - 财政年份:2023
- 资助金额:
$ 20.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
RGPIN-2022-03096 - 财政年份:2022
- 资助金额:
$ 20.53万 - 项目类别:
Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 20.53万 - 项目类别:
Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 20.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
DGECR-2022-00323 - 财政年份:2022
- 资助金额:
$ 20.53万 - 项目类别:
Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 20.53万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 20.53万 - 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
- 批准号:
2050311 - 财政年份:2021
- 资助金额:
$ 20.53万 - 项目类别:
Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
- 批准号:
10260139 - 财政年份:2021
- 资助金额:
$ 20.53万 - 项目类别:














{{item.name}}会员




