From post-stroke assistance to rehabilitation: Neuromuscular adaptations to walking with a soft robotic exosuit
从中风后援助到康复:神经肌肉适应软机器人外装行走
基本信息
- 批准号:10471196
- 负责人:
- 金额:$ 4.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2023-08-15
- 项目状态:已结题
- 来源:
- 关键词:AffectAnkleBiomechanicsCharacteristicsChronicClinical assessmentsComplementDevelopment PlansElectric StimulationEvaluationFinancial compensationGaitImpairmentIndividualIsometric ContractionLaboratoriesLaboratory ResearchLeadLimb structureLinkLocomotionLower ExtremityMeasuresMentorsMethodsMuscleMuscle WeaknessParesisParticipantPatientsPersonsPredictive FactorProcessProtocols documentationReactionRecoveryRehabilitation deviceRehabilitation therapyResearch Project GrantsRoboticsSelf-Help DevicesSpecificitySpeedStandardizationStrokeTechnologyTestingTrainingTranslational ResearchVisitVolitionWalkingWorkbiomechanical testexosuitgait rehabilitationhemiparesisimprovedindexinglocomotor controlmotor controlmultimodalitymuscle strengthnervous system disorderneuromuscularneuromuscular rehabilitationneuroregulationnovelpost strokepredicting responserelating to nervous systemresearch clinical testingskillsspatiotemporalsynergismtreadmilltreatment responsewalking speed
项目摘要
PROJECT SUMMARY
Stroke affects approximately 800,000 people annually, resulting in hemiparesis and characteristically slow,
asymmetric walking. Our team has developed and extensively studied a novel soft-robotic exosuit that
improves paretic propulsion and walking speed by augmenting the function of the paretic limb during use.
These findings demonstrate the value of the soft robotic exosuit as an assistive device, but its rehabilitative
potential remains unclear.
Recovery of walking speed is important for both clinicians and patients; however, improvements in
walking speed may be achieved via different rehabilitation processes, ranging from propulsion recovery (e.g.,
propulsion symmetry) to compensation (e.g., a reliance on nonparetic propulsion). Ground reaction force
analyses have been used to differentiate between propulsion recovery and compensation but lack specificity
in identifying impairments in the neuromuscular control of the lower limb muscles during walking and
improvements in control with rehabilitation. To determine the rehabilitative potential of REAL, we will
combine measures of neuromuscular control with conventional measures of locomotor propulsion and speed
to characterize its rehabilitation processes (i.e., recovery vs. compensation) and neuromuscular predictors.
For this project, we will study the effects of repeated sessions of Robotic Exosuit Augmented
Locomotion (REAL) gait training, a standardized gait retraining protocol developed by our laboratory to
leverage the gait- restorative effects of soft robotic exosuits to retrain faster walking after stroke by way of
improved paretic propulsion. More specifically, 22 chronic (>6 months) post-stroke participants will
complete three sessions of REAL gait training. To characterize the rehabilitation potential of REAL (Aim 1)
and predictors of a REAL therapeutic response (Aim 2), at each visit we will conduct multi-modal
evaluations that combine standard biomechanical and clinical assessments (i.e., propulsion and speed)
with distinct measures of neuromuscular control known to be sensitive to post-stroke gait impairments. A
multi-modal evaluation approach that combines measures of neuromuscular control with standard clinical
and biomechanical evaluations provides the best opportunity to understand the link between post-stroke
walking impairment and recovery with REAL training.
This research project complements my development plan by providing an opportunity to work with my
mentoring team to apply and enhance my skills in measuring, analyzing, and understanding neuromuscular
control post-stroke, ultimately preparing me to lead a translational research laboratory developing and
evaluating rehabilitation devices to improve walking ability in people with neurological disorders.
项目摘要
中风每年影响大约80万人,导致轻偏瘫和典型的缓慢,
不对称行走我们的团队已经开发并广泛研究了一种新型的软机器人外装,
通过在使用过程中增强麻痹肢体的功能来改善麻痹推进和行走速度。
这些发现证明了软机器人外装作为辅助设备的价值,但其康复
潜力尚不清楚。
步行速度的恢复对临床医生和患者都很重要;然而,
步行速度可以通过不同的康复过程来实现,从推进恢复(例如,
推进对称性)到补偿(例如,依赖于非麻痹性推进)。地面反作用力
虽然已经有人用分析的方法来区分推进力的恢复和补偿,但是这种方法缺乏针对性
在识别行走过程中下肢肌肉的神经肌肉控制障碍方面,
通过康复改善控制。为了确定真实的的康复潜力,我们将
将神经肌肉控制的联合收割机措施与运动推进和速度的常规措施相结合
以表征其康复过程(即,恢复与补偿)和神经肌肉预测因子。
在这个项目中,我们将研究机器人Exosuit Augmented的重复会话的效果
运动(真实的)步态训练,由我们实验室开发的标准化步态再训练协议,
利用软机器人运动服的步态恢复效果,通过以下方式重新训练中风后更快的行走:
改善麻痹性推进。更具体地说,22名慢性(>6个月)卒中后参与者将
完成三次真实的的步态训练。表征真实的的康复潜力(目的1)
和真实的反应的预测因子(目标2),在每次访视时,我们将进行多模式
结合联合收割机标准生物力学和临床评估的评估(即,推进力和速度)
已知神经肌肉控制的不同测量对中风后步态损伤敏感。一
多模式评估方法,将神经肌肉控制措施与标准临床
生物力学评估提供了最好的机会来了解中风后
步行障碍和恢复与真实的的训练。
这个研究项目补充了我的发展计划,提供了一个机会,与我的工作。
指导团队应用并提高我在测量、分析和理解神经肌肉方面的技能
控制中风后,最终准备我领导一个转化研究实验室发展,
评估康复设备,以提高神经系统疾病患者的行走能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Collimore其他文献
Ashley Collimore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashley Collimore', 18)}}的其他基金
From post-stroke assistance to rehabilitation: Neuromuscular adaptations to walking with a soft robotic exosuit
从中风后援助到康复:神经肌肉适应软机器人外装行走
- 批准号:
10315806 - 财政年份:2021
- 资助金额:
$ 4.28万 - 项目类别:
相似国自然基金
ANKLE2通过调控PINK1减轻脓毒症心肌细胞线粒体钙超载的机制研究
- 批准号:CSTB2023NSCQ-MSX0603
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
影响核膜与内质网膜结构的ANKLE2分子在衰老调控中的关键作用
- 批准号:91649107
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:重大研究计划
相似海外基金
Imaging Ankle Biomechanics under Load with the MROpen
使用 MROpen 对负载下的踝关节生物力学进行成像
- 批准号:
564356-2021 - 财政年份:2021
- 资助金额:
$ 4.28万 - 项目类别:
University Undergraduate Student Research Awards
Biomechanics and Biotribology of the Haemophilic Ankle - A Computational Study
血友病踝关节的生物力学和生物摩擦学 - 计算研究
- 批准号:
2118904 - 财政年份:2018
- 资助金额:
$ 4.28万 - 项目类别:
Studentship
The In Vivo Biomechanics of Lateral Ankle Ligament Injury and Reconstruction
踝关节外侧韧带损伤与重建的体内生物力学
- 批准号:
7683901 - 财政年份:2008
- 资助金额:
$ 4.28万 - 项目类别:
The In Vivo Biomechanics of Lateral Ankle Ligament Injury and Reconstruction
踝关节外侧韧带损伤与重建的体内生物力学
- 批准号:
7876887 - 财政年份:2008
- 资助金额:
$ 4.28万 - 项目类别:
The In Vivo Biomechanics of Lateral Ankle Ligament Injury and Reconstruction
踝关节外侧韧带损伤与重建的体内生物力学
- 批准号:
7530457 - 财政年份:2008
- 资助金额:
$ 4.28万 - 项目类别:
BIOMECHANICS OF FOOT/ANKLE INJURIES USING 3D IMAGING
使用 3D 成像研究足部/踝部损伤的生物力学
- 批准号:
6512245 - 财政年份:2000
- 资助金额:
$ 4.28万 - 项目类别:
BIOMECHANICS OF FOOT/ANKLE INJURIES USING 3D IMAGING
使用 3D 成像研究足部/踝部损伤的生物力学
- 批准号:
6375319 - 财政年份:2000
- 资助金额:
$ 4.28万 - 项目类别:
BIOMECHANICS OF FOOT/ANKLE INJURIES USING 3D IMAGING
使用 3D 成像研究足部/踝部损伤的生物力学
- 批准号:
6127346 - 财政年份:2000
- 资助金额:
$ 4.28万 - 项目类别:
FOOT AND ANKLE BIOMECHANICS WITH ORTHOSIS AMBULATION
借助矫形器行走的足部和踝部生物力学
- 批准号:
2751276 - 财政年份:1999
- 资助金额:
$ 4.28万 - 项目类别:
FOOT AND ANKLE BIOMECHANICS WITH ORTHOSIS AMBULATION
借助矫形器行走的足部和踝部生物力学
- 批准号:
6362471 - 财政年份:1999
- 资助金额:
$ 4.28万 - 项目类别: