AI-assisted Imaging and Prediction of Cardiac Arrhythmia Origins using 4D Ultrasound
使用 4D 超声进行人工智能辅助成像和心律失常起源预测
基本信息
- 批准号:10473146
- 负责人:
- 金额:$ 139.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAnatomyArrhythmiaArtificial IntelligenceAtrial FibrillationCardiacCardiac Electrophysiologic TechniquesCardiac ablationCardiovascular DiseasesCathetersComplexComputer SimulationConsumptionDataData SetDiagnosisDiseaseElectrodesElectrophysiology (science)GoalsHeartImageImaging TechniquesLeadLearningLifeMeasurementMechanicsMorbidity - disease rateMorphologyMyocardiumPatientsProcessRecurrenceResolutionSurfaceTherapeuticTherapeutic InterventionTimeTrainingVentricular Tachycardiabasebiomedical imagingclinical imagingex vivo imagingexperimental studyfluorescence imagingheart electrical activityheart imagingheart rhythmheart visualizationhigh riskinsightmortalitynon-invasive imagingnovelnovel imaging techniquethree-dimensional visualizationultrasoundvoltage
项目摘要
PROJECT SUMMARY / ABSTRACT
Cardiovascular disease is the major cause of mortality and morbidity worldwide. Despite significant progress in
biomedical imaging, the imaging of heart rhythm disorders remains a major technological and scientific
challenge. Consequently, the origins and mechanisms for the onset and progression of cardiac arrhythmias
remain largely insufficiently understood. Patients suffering from cardiac arrhythmias have high recurrence rates
and often require repeated therapeutic interventions, in part because adequate imaging of the processes
underlying heart rhythm disorders has yet to be developed. The state-of-the-art for the diagnosis of heart rhythm
disorders, such as atrial fibrillation or ventricular tachycardia, is catheter-based electro-anatomic contact
mapping. However, catheter mapping is time-consuming and invasive, involving the insertion of electrodes into
the heart’s chambers, where abnormal electrical activity triggering the heart’s irregular contractions is recorded
on its surface. Because the measurements are superficial, they do not adequately capture the full, three-
dimensional electrophysiological dynamics, which evolve underneath the surface and often have their origin
inside the heart muscle. In this project, the applicant aims to develop a novel and radically different approach for
the in-depth transmural imaging of heart rhythm disorders based on high-resolution 4D (time-resolved 3D)
ultrasound and artificial intelligence (AI). Instead of imaging the heart’s electrical activity, the applicant will image
the heart’s 4D deformation and use AI to predict the electrical phenomena from the deformation with the precision
of high-resolution measurements. To achieve this ground-breaking goal, the applicant will generate an extensive
high-resolution dataset, capturing the 4D electrical and mechanical dynamics of arrhythmic hearts, and train an
AI to learn the complex relationship between the heart’s deformations and the electrophysiological wave
phenomena that cause these deformations. The AI will become highly specialized in recognizing cardiac
deformation mechanics and associating them with the corresponding underlying electrical arrhythmia
morphology. The data will be generated in beyond-state-of-the-art voltage-sensitive ex vivo fluorescence imaging
experiments with intact, isolated hearts, as well as during clinical imaging and in computer simulations. The high-
risk approach, which preliminary data suggests is achievable, will be enabled by the applicant’s unique expertise
in ex vivo imaging, which, combined with recent advancements in AI, could lead to a major breakthrough.
Ultrasound-based imaging providing transmural 4D visualizations of cardiac arrhythmias in real-time would be
transformative in cardiac electrophysiology and provide novel insights into many of the yet unseen processes
underlying heart rhythm disorders. If successful, the entirely non-invasive imaging technique could greatly
advance the diagnosis of heart rhythm disorders and be used to guide therapeutics, such as catheter ablation,
more reliably and effectively.
项目总结/摘要
心血管疾病是全世界死亡和发病的主要原因。尽管取得了重大进展,
生物医学成像,心脏节律紊乱的成像仍然是主要的技术和科学
挑战.因此,心律失常的发生和发展的起源和机制
在很大程度上还没有被充分理解。患有心律失常的患者复发率很高
并且经常需要重复的治疗干预,部分原因是对这些过程进行了充分的成像,
潜在的心脏节律紊乱还有待发展。心脏节律诊断的最新进展
心房颤动或室性心动过速等疾病,是基于导管的电解剖接触
映射.然而,导管标测是耗时且侵入性的,涉及将电极插入到导管中。
心脏的腔室,在那里记录触发心脏不规则收缩的异常电活动
在它的表面。因为测量是肤浅的,他们没有充分捕捉完整的,三个-
三维电生理动力学,它在表面之下演变,往往有其起源
在心肌内。在这个项目中,申请人的目标是开发一种新颖的和完全不同的方法,
基于高分辨率4D(时间分辨3D)的心脏节律紊乱的深度透壁成像
超声波和人工智能(AI)。申请人不需要对心脏的电活动进行成像,
心脏的4D变形,并使用AI从变形中精确预测电现象
高分辨率的测量。为了实现这一突破性的目标,申请人将产生广泛的
高分辨率数据集,捕捉心脏的4D电气和机械动力学,并训练一个
人工智能学习心脏变形和电生理波之间的复杂关系
导致这些变形的现象。人工智能将变得高度专业化,
变形力学,并将它们与相应的潜在电心律失常相关联
形态学这些数据将在超越最先进的电压敏感离体荧光成像中生成
在完整的、离体的心脏实验中,以及在临床成像和计算机模拟中。高-
初步数据表明,风险方法是可以实现的,申请人的独特专业知识将使其成为可能
在体外成像方面,结合人工智能的最新进展,可能会带来重大突破。
基于超声的成像提供心律失常的实时透壁4D可视化,
心脏电生理学的变革,并为许多尚未看到的过程提供新的见解
潜在的心律紊乱。如果成功的话,这种完全无创的成像技术将大大
推进心脏节律紊乱的诊断并用于指导治疗,例如导管消融,
更加可靠和有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Christoph其他文献
Jan Christoph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 139.2万 - 项目类别:
Studentship
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 139.2万 - 项目类别:
Continuing Grant
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 139.2万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 139.2万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




