Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI

搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能

基本信息

  • 批准号:
    10473397
  • 负责人:
  • 金额:
    $ 250.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

OVERALL: ABSTRACT (PROJECT DESCRIPTION) Bridge2AI is a signature NIH initiative. It recognizes the challenges and opportunities in the growth of data sci- ence and data-driven methods for biomedical and behavioral research and healthcare delivery. We have reached a key moment: with the exponential growth of our ability to collect and analyze data, we must consider how we use this information to benefit everyone in an equitable way, providing a collective path forward. Data Generation Projects (DGPs) within Bridge2AI will tackle “grand challenges”: questions that will shape future scientific dis- covery and can ultimately impact the health and care of many. Marshalling these forces collectively requires experience and insight to create a collaborative, interdisciplinary endeavor that brings together disparate stake- holders to realize Bridge2AI’s mission: discovery, collaboration, and learning. Building from our collective experience in successfully guiding large NIH initiatives and (inter)national scientific consortia, our BRIDGE Coordination Center (CC) is designed to ensure a responsive set of Cores that will sup- port and enable the DGPs in their grand challenges. Representing multiple institutions (UCLA, Penn State Uni- versity, University of Florida, University of Michigan, University of Southern California, Oregon Health & Sciences University, Sage Bionetworks, EMBL-EBI), we propose multiple interacting Cores. These Cores have interdisci- plinary expertise across several key areas, including biomedical informatics/data science and AI (methods, ap- plications, evaluation), as well as across different domains and data types. Our Cores (Ethics, Standards, Tool Optimization, Skills & Workforce Development) are ready to interact to facilitate cross-cutting activities related to ethics and trustworthy artificial intelligence (ETAI); FAIR principles (findable, accessible, interoperable, reusable) across emergent datasets and domains; comparison and benchmarking of developed AI-ready datasets and tools. Across our CC we will create a basis for diverse trainees to not only appreciate the implications of AI in biomedical/behavioral research, but to meaningfully engage with them – embracing the heterogeneity of experi- ences, backgrounds, and objectives to maximize the richness and strength this diversity brings in our actions. We plan to work with a Teaming Core to enable activities that bring together disparate groups within Bridge2AI. Our efforts are organized by a skilled Administrative Core who will provide oversight and cohesion to this en- deavor, both across the Cores as well as with the DGPs and NIH. Our Cores are shaped to maximize the inte- gration and sharing of ideas across the DGPs and Bridge2AI as a whole through dynamic, contemporary com- munication methods; the refinement and dissemination of best practices between these groups and wider sci- entific community through multiple venues; and the evaluation of the effectiveness of the methods and overall Bridge2AI initiative. This CC will provide a unified framework for Bridge2AI to engage and education different stakeholders, and together blaze a collective trail forward for biomedical and behavioral AI – for everyone.
总体:摘要(项目描述) Bridge2AI 是 NIH 的一项标志性举措。它认识到数据科学发展中的挑战和机遇 用于生物医学和行为研究以及医疗保健服务的数据驱动方法。我们已经达到了 关键时刻:随着我们收集和分析数据的能力呈指数级增长,我们必须考虑如何 利用这些信息以公平的方式使每个人受益,提供集体前进的道路。数据生成 Bridge2AI 内的项目 (DGP) 将解决“重大挑战”:将影响未来科学发展的问题 覆盖并最终会影响许多人的健康和护理。将这些力量集中起来需要 经验和洞察力创造一个协作的、跨学科的努力,将不同的利益相关者聚集在一起 持有人实现 Bridge2AI 的使命:发现、协作和学习。 借鉴我们成功指导大型 NIH 计划和(国际)国家科学的集体经验 联盟,我们的 BRIDGE 协调中心 (CC) 旨在确保一组响应迅速的核心,以支持 端口并帮助 DGP 应对重大挑战。代表多个机构(加州大学洛杉矶分校、宾夕法尼亚州立大学 佛罗里达大学、密歇根大学、南加州大学、俄勒冈州健康与科学大学 大学、Sage Bionetworks、EMBL-EBI),我们提出了多个相互作用的核心。这些核心有跨学科 跨几个关键领域的专业知识,包括生物医学信息学/数据科学和人工智能(方法、应用程序) 复制、评估),以及跨不同领域和数据类型。我们的核心(道德、标准、工具 优化、技能和劳动力发展)已准备好进行互动,以促进与以下方面相关的跨领域活动 道德和值得信赖的人工智能(ETAI);公平原则(可查找、可访问、可互操作、可重用) 跨新兴数据集和领域;开发的人工智能就绪数据集的比较和基准测试 工具。在我们的 CC 中,我们将为不同的学员奠定基础,让他们不仅能够理解人工智能在 生物医学/行为研究,但要有意义地参与其中——拥抱经验的异质性 的背景和目标,以最大限度地发挥这种多样性给我们的行动带来的丰富性和力量。 我们计划与 Teaming Core 合作,开展将 Bridge2AI 内不同群体聚集在一起的活动。 我们的工作是由熟练的行政核心组织的,他们将为这一项目提供监督和凝聚力。 各个核心以及 DGP 和 NIH 之间的合作。我们的核心的形状是为了最大限度地提高集成度 通过动态的、当代的合作,DGP 和 Bridge2AI 作为一个整体来交流和分享想法。 通讯方法;这些团体和更广泛的科学界之间的最佳实践的完善和传播 通过多个场所形成实体社区;以及方法和总体有效性的评估 Bridge2AI 倡议。该 CC 将为 Bridge2AI 提供一个统一的框架,以吸引和教育不同的人 利益相关者,共同为每个人的生物医学和行为人工智能开辟一条集体道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALEX BUI其他文献

ALEX BUI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALEX BUI', 18)}}的其他基金

Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10801686
  • 财政年份:
    2023
  • 资助金额:
    $ 250.42万
  • 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10655487
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10707881
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10615779
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10370048
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10406058
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10285908
  • 财政年份:
    2021
  • 资助金额:
    $ 250.42万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10657821
  • 财政年份:
    2021
  • 资助金额:
    $ 250.42万
  • 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
  • 批准号:
    10523518
  • 财政年份:
    2020
  • 资助金额:
    $ 250.42万
  • 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
  • 批准号:
    10087957
  • 财政年份:
    2020
  • 资助金额:
    $ 250.42万
  • 项目类别:

相似海外基金

Optimizing Health and Well-Being of Diverse Mothers with IDD and Their Infants During the Perinatal Period: A Virtual Advocate Tool for Data-Driven Supports
优化患有 IDD 的不同母亲及其婴儿在围产期的健康和福祉:用于数据驱动支持的虚拟倡导工具
  • 批准号:
    10760051
  • 财政年份:
    2023
  • 资助金额:
    $ 250.42万
  • 项目类别:
POSE: Phase II: Advocate Led Long-term Gameplan for Open OnDemand (ALL GOOD)
POSE:第二阶段:倡导者主导 Open OnDemand 的长期游戏计划(一切顺利)
  • 批准号:
    2303692
  • 财政年份:
    2023
  • 资助金额:
    $ 250.42万
  • 项目类别:
    Standard Grant
Capitalising on our differences: A gathering to better understand and advocate for Early Career Health Researchers in Canada
利用我们的差异:更好地理解和倡导加拿大早期职业健康研究人员的聚会
  • 批准号:
    468168
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
    Miscellaneous Programs
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
  • 批准号:
    10427960
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Evaluating an ACEs-Targeting Advocate Model of a Substance Use Prevention Program
评估药物使用预防计划的针对 ACE 的倡导者模型
  • 批准号:
    10577074
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
The Art of Creation: Using Art-Based Knowledge Translation to Promote and Advocate for a Healthy Start to Life
创造的艺术:利用基于艺术的知识转化来促进和倡导健康的生命开端
  • 批准号:
    486588
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
    Studentship Programs
When I am Old, I shall Wear Purple Nail Varnish: Utilising performance art to construct queer spaces that celebrate and advocate for ageing bodies
当我老了,我要涂紫色指甲油:利用行为艺术构建酷儿空间,庆祝和倡导衰老的身体
  • 批准号:
    2760091
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
    Studentship
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
  • 批准号:
    10621188
  • 财政年份:
    2022
  • 资助金额:
    $ 250.42万
  • 项目类别:
Techquity by FAITH!: A cluster randomized controlled trial to assess the efficacy of a community-informed, cardiovascular health promotion mobile hlth intervention with digital health advocate support
Techquity by FAITH!:一项整群随机对照试验,旨在评估社区知情、心血管健康促进移动 hlth 干预措施在数字健康倡导者支持下的效果
  • 批准号:
    10891016
  • 财政年份:
    2021
  • 资助金额:
    $ 250.42万
  • 项目类别:
CMV responses in autoantibody positive subjects advocate antiviral treatments for prevention of T1D
自身抗体阳性受试者的 CMV 反应主张抗病毒治疗以预防 T1D
  • 批准号:
    10230365
  • 财政年份:
    2020
  • 资助金额:
    $ 250.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了