Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
基本信息
- 批准号:10801686
- 负责人:
- 金额:$ 58.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAnxietyAppointmentAutomobile DrivingAwardBridge to Artificial IntelligenceClinicalCommunitiesComplement component C1ConsultationsData ScienceE-learningEducationEducational CurriculumEquityEthicsFacultyFosteringFutureGoalsGrowthHealthcareHourLeadershipMedicalMedical InformaticsMedical StudentsMedicineMentorsMentorshipMissionModernizationNursesPhysiciansProcessProtocols documentationReportingResearch PersonnelSocietiesSpecialistStrategic PlanningTechnologyTrainingTrustUnderrepresented MinorityUnited States National Institutes of HealthVisioncareerclinical careclinical practicecohortcommunity buildingdesigndiverse datadriving forceempowermentexperienceinnovationmedical schoolsminority communitiesmultidisciplinarynext generationprogramsrecruitskillstrustworthiness
项目摘要
The NIH's Strategic Plan for Data Science sets forth a grand and ambitious goal to enhance the diversity of the
data science workforce and to engage underrepresented minority communities. Indeed, the vision of an ethical
and equitable society supported by modern AI/ML healthcare innovations can only be achieved when our stake-
holders include representatives of all communities. In lockstep with the NIH's diversity goals, this application
aims to enact long-lasting change in the biomedical AI/ML community by a key leadership workforce to advance
our mission in fostering the growth of a diverse next-generation multidisciplinary cohort of physicians and inves-
tigators who are the driving force enabling Bridge2AI. Briefly, we recognize a major challenge in biomedical
AI/ML education that limits the widespread adoption of modern AI/ML in health care and biomedical innovations.
There exists a general lack of understanding regarding ethical and trustworthy AI (ETAI) in our workforce, com-
bined with public anxiety surrounding the use of AI/ML applications. These concerns stifle the potential impact
of these AI/ML technologies. Accordingly, we propose to establish the Bridge2AI-ENABLE Scholar Award.
Essential to the successful implementation of AI/ML strategies are the emerging underrepresented in medicine
(URiM); these professionals (e.g., medical students, clinical fellows, nurses, physicians) are well-trained in their
medical professions and are committed to undergo further training in AI/ML and to advance clinical practice. Our
proposed Bridge2AI-ENABLE Scholar Award will offer targeted AI/ML training for up to 15 URiM medical profes-
sionals who are poised to become future leaders driving AI/ML innovation in health care. This URiM enrichment
activity will consist of designated mentor teams composed of clinicians, AI/ML specialists, and ETAI leaders. We
have organized a comprehensive 10-week long training plan that includes: 1) a well-thought-out applicant re-
cruitment plan and mentee appointment protocol; 2) a mentor team with strong commitment from UCLA School
of Medicine, medical informatics, and computational medicine faculty that follow our mentor selection processes;
and 3) a customized curriculum tailoring each mentee to completing their training. Overall, our training platform
aims to overcome anxiety surrounding biomedical AI/ML, build community trust, and empower trainees exploring
biomedical AI/ML topics with entry at ground zero. Each trainee can design their personalized curriculum and
complete AI education at their own pace. The majority of the curriculum is conducted via an e-learning platform,
complemented by 1-on-1 mentorship and A&Q consultation hours. Each mentee will partner with the SWD Core
to customize training plans and design their personalized curriculum, which enables them to complete AI edu-
cation in their own space and to carry out AI/ML projects in real-world scenarios. The mentor teams will be
responsible for creating milestone reports for each mentee to steer a successful career trajectory. The goal of
this supplemental activity is to support URiM medical professionals to acquire necessary understanding and
skills in AI/ML and to enable them to be the driving force to advance AI strategies in modern healthcare.
美国国家卫生研究院的数据科学战略计划提出了一个宏伟而雄心勃勃的目标,以增强数据的多样性
数据科学工作人员,并与代表不足的少数族裔社区接触。事实上,一种道德的愿景
由现代AI/ML医疗创新支持的公平社会只有在我们的利益-
持有者包括所有社区的代表。与美国国立卫生研究院的多样性目标同步,这项申请
旨在通过关键的领导团队推动生物医学AI/ML社区的长期变革
我们的使命是促进多元化的下一代多学科医生队伍的发展,并投资-
老虎是使Bridge2AI成为可能的驱动力。简而言之,我们认识到生物医学领域的一个主要挑战
AI/ML教育限制了现代AI/ML在医疗保健和生物医学创新中的广泛采用。
在我们的员工队伍中,普遍缺乏对道德和值得信赖的人工智能(ETAI)的理解。
伴随着公众对AI/ML应用程序使用的焦虑。这些担忧扼杀了潜在的影响
在这些AI/ML技术中。因此,我们建议设立Bridge2AI-Enable学者奖。
成功实施AI/ML战略的关键是医学中出现的代表性不足
(URIM);这些专业人员(例如医学生、临床研究员、护士、医生)在他们的
并致力于接受AI/ML方面的进一步培训,并推动临床实践。我们的
拟议的Bridge2AI-Enable学者奖将为多达15名Urim医学教授提供有针对性的AI/ML培训-
准备成为推动医疗保健领域AI/ML创新的未来领导者的专业人士。这次乌里姆浓缩
活动将由指定的导师团队组成,由临床医生、AI/ML专家和ETAI领导者组成。我们
组织了为期10周的全面培训计划,其中包括:1)经过深思熟虑的申请者重新
巡回计划和学员预约协议;2)来自加州大学洛杉矶分校的坚定承诺的导师团队
医学、医学信息学和计算医学学院遵循我们的导师选择程序;
3)定制课程,为每个学员量身定做,以完成培训。总体而言,我们的培训平台
旨在克服围绕生物医学AI/ML的焦虑,建立社区信任,并使学员能够探索
生物医学AI/ML主题,从零开始进入。每个学员都可以设计自己的个性化课程,
以自己的节奏完成AI教育。大部分课程是通过电子学习平台进行的,
辅以一对一辅导和问答咨询时间。每名学员将与社署核心合作
定制培训计划,设计个性化课程,使他们能够完成人工智能教育。
阳离子在他们自己的空间中,并在真实世界的场景中开展AI/ML项目。指导团队将会是
负责为每位学员创建里程碑式的报告,引导他们走上成功的职业发展轨道。的目标是
这项补充活动是为了支持URIM医疗专业人员获得必要的了解和
在人工智能/ML方面的技能,并使他们能够成为推动现代医疗保健中人工智能战略的推动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10707881 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 58.6万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 58.6万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10087957 - 财政年份:2020
- 资助金额:
$ 58.6万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 58.6万 - 项目类别:
Collaborative R&D
Application name Phase Space - VR hypnotherapy as early intervention for anxiety in students and young people
应用程序名称 Phase Space - VR 催眠疗法作为学生和年轻人焦虑的早期干预
- 批准号:
10055011 - 财政年份:2023
- 资助金额:
$ 58.6万 - 项目类别:
Collaborative R&D