Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
基本信息
- 批准号:10707881
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAgeAreaAssessment toolBayesian NetworkBeliefBone DensityBone TissueCalibrationCessation of lifeCharacteristicsClassificationClinicalDataData SetDeteriorationDiscriminationDiseaseEarly InterventionElectronic Health RecordFemurFractureFutureGoalsGuidelinesIndividualInferiorLifeLogistic RegressionsLongitudinal cohortMachine LearningMenopauseMethodologyMethodsModelingNeckOsteoporosisOsteoporoticOutcomePerformancePopulationPostmenopausePredictive ValueProspective StudiesPublic HealthROC CurveRecommendationRiskRisk AssessmentRisk EstimateRisk FactorsSelf AssessmentSiteSpecificityStratificationTechniquesTestingUnited StatesUnited States Preventative Services Task ForceValidationWomanWomen&aposs Healthage groupagedbonebone fragilitybone lossbone masscandidate selectionchronic paindesigndisabilityelectronic health record systemexperiencefollow-upfracture riskgradient boostinghuman old age (65+)improvedindexinginsightmachine learning modelmachine learning predictionmodel buildingosteoporosis with pathological fractureperformance testspharmacologicpredictive modelingpredictive toolsrandom forestrepositoryrisk predictionscreeningscreening guidelinestool
项目摘要
PROJECT ABSTRACT
Half of all postmenopausal women will experience an osteoporosis-related fracture in their remaining lifetimes.
As these fractures can lead to disability, loss of independence, and death, it is important to identify who is at risk
for early intervention and mitigation. While clinical guidelines support routine osteoporosis screening for women
aged ≥65 years, only selective screening is recommended for younger postmenopausal women aged 50-64
based on the use of risk assessment tools (e.g., OST, FRAX, SCORE). However, we have shown that these
tools – which were not specifically developed for women in this age group – do not differentiate well between
women who do and do not have osteoporosis (based on bone mineral density, BMD) and/or subsequent fracture.
The objective of this project is to explore machine learning (ML) to improve osteoporosis risk assessment in
young postmenopausal women. Prior ML-based analyses for osteoporosis and related fractures exist but are on
non-American populations and/or are of limited size. We will use the large Women's Health Initiative (WHI) Study
(>160,000 individuals from the United States), to develop, validate, and compare different machine learning
approaches (random forests; logistic regression; dynamic belief network, DBN) for younger postmenopausal
women. ML models will be constructed and assessed for two tasks: 1) predicting fracture risk in women aged
50-64 (Aim 1); and 2) predicting osteoporosis (per BMD; Aim 2). In each case, we will build ML models using
existing risk factors from current tools, as well as add additional variables collected from the WHI to identify new
features that may improve predictive power. We will also assess the value of temporal model by building DBNs,
using an individual's past observations to guide predictions. We will compute technical performance metrics
(e.g., sensitivity, specificity, positive predictive value) and conduct error analyses to contrast what (sub)groups
each model (in)correctly identifies. We will also perform sensitivity analyses to ascertain the impact of different
variables on the robustness of the model's predictions. Lastly, we plan to externally validate (Aim 3) the models
from Aims 1 & 2 using electronic health record (EHR) datasets from UCLA and UCSF, investigating the degree
of transportability. Successful execution of this R21 will: 1) develop and test different ML models predicting major
osteoporotic fracture and osteoporosis in US women; 2) identify potential additional variables that inform the risk
of these conditions; and 3) provide insight into areas where such ML-models may be improved through stratifi-
cation and/or future methodological approaches. The results from this R21 will serve as a baseline for a broader
R01 to develop more effective predictive models for fracture and osteoporotic risk.
项目摘要
一半的绝经后妇女将在其余生经历与骨质疏松症相关的骨折。
由于这些骨折可能导致残疾、丧失独立性和死亡,因此确定谁处于危险之中是很重要的
进行早期干预和缓解。虽然临床指南支持对女性进行常规的骨质疏松筛查
Agee≥65岁,建议50岁更年轻的绝经后女性仅进行选择性筛查--
基于风险评估工具(例如,OST、FRAX、SCORE)的使用。然而,我们已经证明,这些
工具--不是专门为这个年龄段的女性开发的--无法很好地区分
患有和不患有骨质疏松症(基于骨密度,BMD)和/或继发骨折的女性。
本项目的目标是探索机器学习(ML)来改进骨质疏松风险评估
年轻的绝经后妇女。先前基于ML的骨质疏松症和相关骨折分析已经存在,但仍在进行中
非美国人口和/或人口规模有限。我们将利用大型妇女健康倡议(WHI)研究
(来自美国的160,000人),开发、验证和比较不同的机器学习
方法(随机森林;Logistic回归;动态信念网络,DBN)用于年轻的绝经后
女人。ML模型将被构建并评估两个任务:1)预测老年女性的骨折风险
50-(目标1);以及2)预测骨质疏松症(根据骨密度;目标2)。在每种情况下,我们都将使用
来自当前工具的现有风险因素,以及添加从WHI收集的其他变量,以确定新的
可提高预测能力的功能。我们还将通过构建DBN来评估时间模型的价值,
使用个人过去的观察来指导预测。我们将计算技术性能指标
(例如,敏感度、特异度、阳性预测值),并进行误差分析以对比什么(子)组
每个型号(中)都能正确识别。我们还将进行敏感性分析,以确定不同
变量对模型预测的稳健性的影响。最后,我们计划对模型进行外部验证(目标3
从目标1和目标2使用来自加州大学洛杉矶分校和加州大学旧金山分校的电子健康记录(EHR)数据集,调查学位
可携带性。R21的成功实施将:1)开发和测试不同的ML模型预测主要
美国女性的骨质疏松性骨折和骨质疏松;2)确定潜在的额外变量,以告知风险
这些条件;以及3)洞察这些ML模型可以通过分层改进的领域。
阳离子和/或未来的方法学方法。R21的结果将作为更广泛的
R01开发更有效的骨折和骨质疏松风险预测模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Race and Ethnicity and Fracture Prediction Among Younger Postmenopausal Women in the Women's Health Initiative Study.
妇女健康倡议研究中年轻绝经后妇女的种族和民族以及骨折预测。
- DOI:10.1001/jamainternmed.2023.1253
- 发表时间:2023
- 期刊:
- 影响因子:39
- 作者:Crandall,CarolynJ;Larson,JosephC;Schousboe,JohnT;Manson,JoAnnE;Watts,NelsonB;Robbins,JohnA;Schnatz,Peter;Nassir,Rami;Shadyab,AladdinH;Johnson,KarenC;Cauley,JaneA;Ensrud,KristineE
- 通讯作者:Ensrud,KristineE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10087957 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Holocene Landscape History in the forest area „Schweinert“ – a geoarchaeological study in Germany’s largest Bronze Age barrow cemetery
森林地区全新世景观历史“Schweinert”——德国最大的青铜时代手推墓地的地质考古研究
- 批准号:
452251818 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Research Grants
Empirical study on the Iron Production of the Early Iron Age in the Area of Altai Extending over Four Countries
阿尔泰地区四国早期铁器时代铁矿生产实证研究
- 批准号:
17H01646 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Religious Paracelsianism: Science and Religion in the German-speaking Area of the Early Modern Age
宗教帕拉塞尔西主义:近代早期德语区的科学与宗教
- 批准号:
16K21332 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Age and significance of permafrost landforms in the Fort McMurray area
麦克默里堡地区多年冻土地貌的年龄和意义
- 批准号:
478568-2015 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
University Undergraduate Student Research Awards
Late Neolithic/Early Bronze Age developments in the south-west Baltic area (2500-1500 BC): Why did the Bruszczewo-Leki Male type of power structures appear?
波罗的海西南部地区新石器时代晚期/青铜时代早期的发展(公元前2500-1500年):为什么会出现布鲁什切沃-莱基男性类型的权力结构?
- 批准号:
277223019 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Research Grants
'Ritual feasting' in the Late Bronze Age in the northwestern Carpathian area -archaeological and scientific aspects
喀尔巴阡山脉西北部地区青铜时代晚期的“仪式盛宴”——考古和科学方面
- 批准号:
287419687 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Research Grants
Research on the Folk House of Yeosu Area in a Modern Age -Consideration from a Viewpoint of the Influence of the Ocean Culture Area-
近代丽水地区民居研究-从海洋文化区影响的角度思考-
- 批准号:
26420607 - 财政年份:2014
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study about the age and the production area of the Yan Guo and Liaoning Area Remains in the Spring and Autumn Warring States Period
春秋战国时期燕国及辽宁地区遗存的年代及产地研究
- 批准号:
25300043 - 财政年份:2013
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The formation process of Tai Hang mountains area in Final stage of Chinese Neolithic age : Focused on analysing pottery
中国新石器时代末期大坑山区的形成过程——以陶器为重点分析
- 批准号:
23820059 - 财政年份:2011
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Bronze Age Carian Iasos: Structures, Stratigraphy, and Finds from the area of the Late Roman Agora (ca. 3000-1500 BC)
青铜时代卡里安亚索斯:晚期罗马集市(约公元前 3000-1500 年)地区的结构、地层学和发现物
- 批准号:
AH/I001611/1 - 财政年份:2011
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship














{{item.name}}会员




