Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
基本信息
- 批准号:10707881
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAgeAreaAssessment toolBayesian NetworkBeliefBone DensityBone TissueCalibrationCessation of lifeCharacteristicsClassificationClinicalDataData SetDeteriorationDiscriminationDiseaseEarly InterventionElectronic Health RecordFemurFractureFutureGoalsGuidelinesIndividualInferiorLifeLogistic RegressionsLongitudinal cohortMachine LearningMenopauseMethodologyMethodsModelingNeckOsteoporosisOsteoporoticOutcomePerformancePopulationPostmenopausePredictive ValueProspective StudiesPublic HealthROC CurveRecommendationRiskRisk AssessmentRisk EstimateRisk FactorsSelf AssessmentSiteSpecificityStratificationTechniquesTestingUnited StatesUnited States Preventative Services Task ForceValidationWomanWomen&aposs Healthage groupagedbonebone fragilitybone lossbone masscandidate selectionchronic paindesigndisabilityelectronic health record systemexperiencefollow-upfracture riskgradient boostinghuman old age (65+)improvedindexinginsightmachine learning modelmachine learning predictionmodel buildingosteoporosis with pathological fractureperformance testspharmacologicpredictive modelingpredictive toolsrandom forestrepositoryrisk predictionscreeningscreening guidelinestool
项目摘要
PROJECT ABSTRACT
Half of all postmenopausal women will experience an osteoporosis-related fracture in their remaining lifetimes.
As these fractures can lead to disability, loss of independence, and death, it is important to identify who is at risk
for early intervention and mitigation. While clinical guidelines support routine osteoporosis screening for women
aged ≥65 years, only selective screening is recommended for younger postmenopausal women aged 50-64
based on the use of risk assessment tools (e.g., OST, FRAX, SCORE). However, we have shown that these
tools – which were not specifically developed for women in this age group – do not differentiate well between
women who do and do not have osteoporosis (based on bone mineral density, BMD) and/or subsequent fracture.
The objective of this project is to explore machine learning (ML) to improve osteoporosis risk assessment in
young postmenopausal women. Prior ML-based analyses for osteoporosis and related fractures exist but are on
non-American populations and/or are of limited size. We will use the large Women's Health Initiative (WHI) Study
(>160,000 individuals from the United States), to develop, validate, and compare different machine learning
approaches (random forests; logistic regression; dynamic belief network, DBN) for younger postmenopausal
women. ML models will be constructed and assessed for two tasks: 1) predicting fracture risk in women aged
50-64 (Aim 1); and 2) predicting osteoporosis (per BMD; Aim 2). In each case, we will build ML models using
existing risk factors from current tools, as well as add additional variables collected from the WHI to identify new
features that may improve predictive power. We will also assess the value of temporal model by building DBNs,
using an individual's past observations to guide predictions. We will compute technical performance metrics
(e.g., sensitivity, specificity, positive predictive value) and conduct error analyses to contrast what (sub)groups
each model (in)correctly identifies. We will also perform sensitivity analyses to ascertain the impact of different
variables on the robustness of the model's predictions. Lastly, we plan to externally validate (Aim 3) the models
from Aims 1 & 2 using electronic health record (EHR) datasets from UCLA and UCSF, investigating the degree
of transportability. Successful execution of this R21 will: 1) develop and test different ML models predicting major
osteoporotic fracture and osteoporosis in US women; 2) identify potential additional variables that inform the risk
of these conditions; and 3) provide insight into areas where such ML-models may be improved through stratifi-
cation and/or future methodological approaches. The results from this R21 will serve as a baseline for a broader
R01 to develop more effective predictive models for fracture and osteoporotic risk.
项目摘要
绝经后妇女中有一半会在剩余的一生中经历与骨质疏松相关的骨折。
由于这些断裂可能导致残疾,失去独立和死亡,因此必须确定谁处于危险之中很重要
进行早期干预和缓解。而临床指南支持女性常规骨质疏松症筛查
年龄≥65岁,仅建议对50-64岁的绝经后妇女进行选择性筛查
根据风险评估工具的使用(例如OST,FRAX,得分)。但是,我们已经证明了这些
工具 - 不是专门为这个年龄段的女性开发的 - 在之间没有很好的区分
做和没有骨质疏松症的妇女(基于骨矿物质密度,BMD)和/或随后的骨折。
该项目的目的是探索机器学习(ML),以改善骨质疏松症的风险评估
绝经后妇女。存在基于ML的骨质疏松症和相关骨折的分析,但仍在
非美国人口和/或规模有限。我们将使用大型妇女健康计划(WHI)研究
(来自美国的16万个人),开发,验证和比较不同的机器学习
年轻的后期后,方法(随机森林;逻辑回归;动态信念网络,DBN)
女性。 ML模型将被构建和评估两项任务:1)预测年龄妇女的骨折风险
50-64(AIM 1); 2)预测骨质疏松症(每个BMD; AIM 2)。在每种情况下,我们都会使用
现有工具的现有风险因素,以及添加从WHI收集的其他变量以识别新的变量
可以提高预测能力的功能。我们还将通过构建DBN来评估临时模型的价值,
利用个人过去的观察来指导预测。我们将计算技术绩效指标
(例如,灵敏度,特异性,阳性预测价值)并进行误差分析以对比(子)组
每个模型(在)正确识别。我们还将执行灵敏度分析以确定不同的影响
关于模型预测的鲁棒性的变量。最后,我们计划外部验证(AIM 3)模型
使用来自UCLA和UCSF的电子健康记录(EHR)数据集的AIMS 1和2
运输能力。该R21的成功执行将:1)开发和测试预测主要的ML模型
美国妇女的骨质疏松骨折和骨质疏松症; 2)确定潜在的其他变量,以告知风险
这些条件; 3)提供有关通过Stratifi-可以改善此类ML模型的区域的洞察力
阳离子和/或未来的方法论方法。 R21的结果将成为更广泛的基线
R01开发出更有效的裂缝和骨质疏松风险的预测模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Race and Ethnicity and Fracture Prediction Among Younger Postmenopausal Women in the Women's Health Initiative Study.
妇女健康倡议研究中年轻绝经后妇女的种族和民族以及骨折预测。
- DOI:10.1001/jamainternmed.2023.1253
- 发表时间:2023
- 期刊:
- 影响因子:39
- 作者:Crandall,CarolynJ;Larson,JosephC;Schousboe,JohnT;Manson,JoAnnE;Watts,NelsonB;Robbins,JohnA;Schnatz,Peter;Nassir,Rami;Shadyab,AladdinH;Johnson,KarenC;Cauley,JaneA;Ensrud,KristineE
- 通讯作者:Ensrud,KristineE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10087957 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 14.1万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10702045 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Innovative Rapid Enabling, Affordable, point-of-Care HPV Self-Testing Strategy (I-REACH)
创新的快速、经济、即时护理 HPV 自检策略 (I-REACH)
- 批准号:
10648634 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Immunomodulatory and behavioral effects of CAR T regulatory cell therapy for Alzheimer's Disease”.
CAR T 调节细胞疗法对阿尔茨海默病的免疫调节和行为影响。
- 批准号:
10633721 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别: