Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations

通过模拟模型预测慢性肾脏病以改善少数民族人群的健康

基本信息

  • 批准号:
    10523518
  • 负责人:
  • 金额:
    $ 37.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-23 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Significant health disparities exist in chronic kidney disease (CKD), CKD progression, and end stage renal disease (ESRD) in ethnically diverse populations. African Americans (AAs) have ~25% higher prevalence of CKD, 3-fold higher rate of ESRD, and the highest risk of mortality among those with estimated glomerular filtration rate (eGFR) 45-95mL/min/1.73m2. The most significant traditional risk factors for CKD and ESRD are diabetes and hypertension accounting for >60% CKD and >70% of new ESRD cases, respectively. Non- traditional risk factors for CKD such as environmental, cultural-behavioral factors, geographic, education, insurance coverage, socioeconomic status and unequal access to optimal healthcare, disproportionately affect CKD health in ethnic minorities. The unique combination of these factors on CKD progression in the real world remains poorly defined. Identification of modifiable risk factors that may reduce CKD disparities would be invaluable to improve quality of life, life expectancy, and decrease economic burden. Simulation models have been successfully applied in other clinical domains, but are limited in CKD development and CKD progression, due to small datasets and the absence of modeling techniques using longitudinal observational health data. Further, no models have been tested in a real-world minority population to uncover the potential for interventional studies that would reduce CKD disparities on a larger scale. To our knowledge, we have created the largest, comprehensive database from electronic health records of >10 million individuals seen between 2006-2016 from a 2-year partnership between UCLA (1.8 million) and Providence St. Joseph Health (PSJH; 9.2 million) systems. From the UCLA Registry population, we identified significant differences in eGFR trajectory decline between AAs and non-AAs according to baseline eGFR, indicating a pattern shift from a higher to a lower, steeper eGFR trajectory suggesting there may be critical windows for interventions to reduce CKD disparities in AAs. Race/ethnicity differences from linear mixed models of all ethnic cohorts persisted even after controlling for demographic and clinical variables known to influence eGFR trajectories. We hypothesize that the use of ethnically diverse populations in the joint UCLA PSJH CKD/At-risk CKD Registry can identify a novel combination of CKD risk factors; and improve the performance of existing simulation models to predict CKD progression. The specific aims are to: 1) develop and test a machine learning-based simulation model for CKD and eGFR trajectories using the UCLA PSJH CKD/At-risk CKD Registry; and conduct internal validation of the models and comparisons with existing CKD risk models, 2) stratify and test simulation models based on different racial/ethnic groups, including external validation based on cross-institution comparisons, and 3) conduct focus groups with UCLA primary care physicians, who manage racial/ethnic patients, to elicit their perspectives on existing and designed simulation models to reduce CKD health disparities. These innovative approaches will facilitate our long-term goal to inform clinical decision support methods to reduce/eliminate CKD health disparities.
项目概要/摘要 慢性肾脏病 (CKD)、CKD 进展和终末期肾病方面存在显着的健康差异 不同种族人群中的疾病(ESRD)。非裔美国人 (AA) 的患病率高出约 25% CKD、ESRD 发生率高出 3 倍,估计肾小球肾病患者的死亡风险最高 滤过率(eGFR)45-95mL/min/1.73m2。 CKD 和 ESRD 最重要的传统风险因素是 糖尿病和高血压分别占新发 ESRD 病例的 60% 以上和 70% 以上。非- 慢性肾病的传统危险因素,如环境、文化行为因素、地理、教育、 保险覆盖范围、社会经济地位以及获得最佳医疗保健的机会不平等,对 少数民族的 CKD 健康状况。这些因素在现实世界中对 CKD 进展的独特组合 仍然不明确。识别可能减少 CKD 差异的可改变风险因素 对于提高生活质量、预期寿命和减轻经济负担具有不可估量的价值。仿真模型有 已成功应用于其他临床领域,但在 CKD 发生和 CKD 进展方面受到限制, 由于数据集较小且缺乏使用纵向观察健康数据的建模技术。 此外,还没有在现实世界的少数群体中测试任何模型来揭示干预的潜力 可以更大规模地减少 CKD 差异的研究。据我们所知,我们已经创建了最大的 2006 年至 2016 年间超过 1000 万人的电子健康记录的综合数据库 加州大学洛杉矶分校 (UCLA)(180 万)和普罗维登斯圣约瑟夫健康中心(PSJH;920 万)系统之间建立了为期 2 年的合作伙伴关系。 从 UCLA 登记人群中,我们发现 AA 之间 eGFR 轨迹下降存在显着差异 和非AAs根据基线eGFR,表明eGFR从较高到较低、更陡峭的模式转变 轨迹表明,干预措施可能存在关键窗口期,以减少 AA 中的 CKD 差异。 即使在控制了 已知影响 eGFR 轨迹的人口统计和临床变量。我们假设使用 加州大学洛杉矶分校 PSJH CKD/高危 CKD 联合登记处的种族多样化人群可以识别出一种新的组合 CKD 危险因素;并提高现有模拟模型的性能以预测 CKD 进展。这 具体目标是:1) 开发和测试基于机器学习的 CKD 和 eGFR 模拟模型 使用 UCLA PSJH CKD/高危 CKD 登记处的轨迹;并对模型进行内部验证 与现有CKD风险模型的比较,2)基于不同种族/民族的分层和测试模拟模型 小组,包括基于跨机构比较的外部验证,以及 3) 开展焦点小组 加州大学洛杉矶分校的初级保健医生负责管理种族/族裔患者,以征求他们对现有和 设计模拟模型以减少 CKD 健康差异。这些创新方法将有利于我们 长期目标是为临床决策支持方法提供信息,以减少/消除 CKD 健康差异。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Etiopathogenesis of kidney disease in minority populations and an updated special focus on treatment in diabetes and hypertension.
  • DOI:
    10.1016/j.jnma.2022.05.004
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Umeukeje, Ebele M.;Washington, Jasmine T.;Nicholas, Susanne B.
  • 通讯作者:
    Nicholas, Susanne B.
Autopopulus: A Novel Framework for Autoencoder Imputation on Large Clinical Datasets.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALEX BUI其他文献

ALEX BUI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALEX BUI', 18)}}的其他基金

Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10801686
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10655487
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
  • 批准号:
    10473397
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10707881
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10615779
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
  • 批准号:
    10370048
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
  • 批准号:
    10406058
  • 财政年份:
    2022
  • 资助金额:
    $ 37.44万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10285908
  • 财政年份:
    2021
  • 资助金额:
    $ 37.44万
  • 项目类别:
Network Core
网络核心
  • 批准号:
    10657821
  • 财政年份:
    2021
  • 资助金额:
    $ 37.44万
  • 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
  • 批准号:
    10087957
  • 财政年份:
    2020
  • 资助金额:
    $ 37.44万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了